

# Homothetic Motions at $\mathrm{E}_{4}^{8}$ with Split Octonions 

Mehdi JAFARI ${ }^{1, \text {, }}$<br>${ }^{1}$ Department of Mathematics, University College of Science and Technology Elm o Fan, Urmia, Iran

Received:30/03/2015 Revised:14/04/2015 Accepted:28/05/2015


#### Abstract

In this paper, a matrix which is similar to Hamilton operators has been developed for split-octonions in eight dimensional semi-Euclidean space $\mathrm{E}_{4}^{8}$ and a new motion has been defined by this matrix. It is shown that this is a homothetic motion. Furthermore, it is found that the motion defined by a regular curve of order $r$ has only one acceleration center of order $(r-1)$ at every instant $t$.


Keyword: Acceleration center, split octonion, Hamilton motion, pole points, semi-orthogonal matrix
2010 Mathematics Subject Classification: 11R52

## 1. INTRODUCTION

In mathematics, the split octonions are an 8-dimensional nonassociative algebra over the real numbers. Unlike the standard octonions, they contain non-zero elements which are non-invertible. Also the signatures of their quadratic forms differ: the split octonions have a split-signature $(4,4)$ whereas the octonions have a positive-definite signature $(8,0)$ [7]. A formulation of the Maxwell equations in terms of the split octonions is presented in [5]. In the previous work, we studied split octonions, their mathematical properties, and how they can be used to rotate objects in eight dimensional semi-Euclidean $\mathrm{E}_{4}^{8}$ [2]. In [8], Hamilton
motion has been defined in four-dimensional Euclidean space $E^{4}$. With the aid of the Hamilton operators, real octonions have been expressed in terms of $8 \times 8$ matrices. These matrices are determined a homothetic motions in 8dimensional Euclidean space $\mathrm{E}^{8}$ [9]. Recently, the homothetic motions in different spaces are investigated e.g. [1,3,4].

It is shown that this study can be repeated for split octonoin, which is a homothetic motion in 8 -dimensional semi-Euclidean space and this homothetic motion satisfied all of the properties in [9].

[^0]
## 2. PRELIMINARIES

Definition 1. $\mathrm{E}^{8}$ with the metric tensor

$$
\langle u, v\rangle=\sum_{i=1}^{4} u_{i} v_{i}-\sum_{j=5}^{8} u_{j} v_{j}, \quad u, v \in \mathrm{E}^{8}
$$

is called semi-Euclidean space and is denoted by $\mathrm{E}_{4}^{8}$ where 4 is called the index of metric.
Definition 2. A vector $u \in \mathrm{E}_{4}^{8}$ is called

$$
\text { Space-like if }\langle u, u\rangle<0 \text { or } u=0 \text {, }
$$

Time-like if $\langle u, u\rangle>0$,
Light-like if $\langle u, u\rangle=0, u \neq 0$.
A matrix $A$ is called a semi-orthogonal matrix if $A \varepsilon A^{T}=A^{T} \varepsilon A=\varepsilon$ and $\operatorname{det} A=1$ where

$$
\varepsilon=\left[\begin{array}{cc}
I_{4} & 0 \\
0 & -I_{4}
\end{array}\right] .
$$

Definition 3. A split octonion $x$ has an expression of the form

$$
x=a_{0} e_{0}+a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}+a_{4} e_{4}+a_{5} e_{5}+a_{6} e_{6}+a_{7} e_{7}
$$

with real coefficients $\left\{a_{i}\right\}$. A split octonion $x$ can also be written as

$$
x=\left(a_{0} e_{0}+a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}\right)+\left(a_{4}+a_{5} e_{1}+a_{6} e_{2}+a_{7} e_{3}\right) e_{4}=q+q^{\prime} e
$$

where $e^{2}=1$ and

$$
q, q^{\prime} \in \mathrm{H}=\left\{q=a_{0}+a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3} \mid e_{1}^{2}=e_{2}^{2}=e_{3}^{2}=-1, a_{i} \in \mathrm{R}\right\},
$$

the real quaternion division algebra. The octonionic units $\left\{e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}\right\}$ satisfy the equalities that are given in the table below;

| 1 | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}$ | $e_{5}$ | $e_{6}$ | $e_{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $e_{1}$ | -1 | $e_{3}$ | $-e_{2}$ | $e_{5}$ | $-e_{4}$ | $-e_{7}$ | $e_{6}$ |
| $e_{2}$ | $-e_{3}$ | -1 | $e_{1}$ | $e_{6}$ | $e_{7}$ | $-e_{4}$ | $-e_{5}$ |
| $e_{3}$ | $e_{2}$ | $-e_{1}$ | -1 | $e_{7}$ | $-e_{6}$ | $e_{5}$ | $-e_{4}$ |
| $e_{4}$ | $-e_{5}$ | $-e_{6}$ | $-e_{7}$ | 1 | $-e_{1}$ | $-e_{2}$ | $-e_{3}$ |
| $e_{5}$ | $e_{4}$ | $-e_{7}$ | $e_{6}$ | $e_{1}$ | 1 | $e_{3}$ | $-e_{2}$ |
| $e_{6}$ | $e_{7}$ | $e_{4}$ | $-e_{5}$ | $e_{2}$ | $-e_{3}$ | 1 | $e_{1}$ |
| $e_{7}$ | $-e_{6}$ | $e_{5}$ | $e_{4}$ | $e_{3}$ | $e_{2}$ | $-e_{1}$ | 1 |

The set of all split octonions is denoted by $\mathrm{O}^{\prime}$. By linearity, multiplication of split octonion can be described by a matrix-vector product as

$$
x \cdot \omega=\left[\begin{array}{cccccccc}
a_{0} & -a_{1} & -a_{2} & -a_{3} & a_{4} & a_{5} & a_{6} & a_{7} \\
a_{1} & a_{0} & -a_{3} & a_{2} & a_{5} & -a_{4} & -a_{7} & a_{6} \\
a_{2} & a_{3} & a_{0} & -a_{1} & a_{6} & a_{7} & -a_{4} & -a_{5} \\
a_{3} & -a_{2} & a_{1} & a_{0} & a_{7} & -a_{6} & a_{5} & -a_{4} \\
a_{4} & a_{5} & a_{6} & a_{7} & a_{0} & -a_{1} & -a_{2} & -a_{3} \\
a_{5} & -a_{4} & a_{7} & -a_{6} & a_{1} & a_{0} & a_{3} & -a_{2} \\
a_{6} & -a_{7} & -a_{4} & a_{5} & a_{2} & -a_{3} & a_{0} & a_{1} \\
a_{7} & a_{6} & -a_{5} & -a_{4} & a_{3} & a_{2} & -a_{1} & a_{0}
\end{array}\right]\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2} \\
b_{3} \\
b_{4} \\
b_{5} \\
b_{6} \\
b_{7}
\end{array}\right],
$$

where $x, \omega \in \mathrm{O}^{\prime}$.
The algebra $\mathrm{O}^{\prime}$ is not associative, since

$$
\begin{aligned}
& e_{1}\left(e_{2} e_{4}\right)=e_{1} e_{6}=-e_{7} \\
& \left(e_{1} e_{2}\right) e_{4}=e_{3} e_{4}=e_{7}
\end{aligned}
$$

But it has the property of alternativity, that is, any two elements in it generate an associate subalgebra isomorphic to an algebra $\mathrm{R}, \mathrm{C}, \mathrm{C}^{\prime}, \mathrm{H}, \mathrm{H}^{\prime}, \mathrm{H}^{0}, \mathrm{H}^{0}, \mathrm{H}^{00}$.

The subalgebra with basis $e_{0}, e_{1}, e_{2}, e_{3}$ is isomorphic to the algebra H of quaternions, and the algebra with basis

$$
e_{0}, e_{1}, e_{4}, e_{5} ; \quad e_{0}, e_{1}, e_{6}, e_{7} ; \quad e_{0}, e_{2}, e_{5}, e_{7} ; \quad e_{0}, e_{2}, e_{4}, e_{5} ; \quad e_{0}, e_{3}, e_{4}, e_{7} ; \quad e_{0}, e_{3}, e_{5}, e_{6}
$$

are isomorphic to the algebra $\mathrm{H}^{\prime}$ of split quaternions. The subalgebras with bases $e_{0}, e_{1}, e_{2}+e_{4}, e_{3}+e_{5}$ and $e_{0}, e_{4}, e_{1}+e_{7},-e_{3}-e_{5}$ are isomorphic to $\mathrm{H}^{0}$ and $\mathrm{H}^{\prime 0}$, the subalgebra with basis

$$
e_{0}, \frac{e_{1}+e_{7}}{2}, \frac{e_{2}+e_{4}}{2}, \frac{e_{3}+e_{5}}{2}
$$

is isomorphic to $\mathrm{H}^{00}$ [3].
It is useful, therefore, to define the following terms:
The conjugate of $x$ is

$$
\bar{x}=a_{0} e_{0}-\left(a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}+a_{4} e_{4}+a_{5} e_{5}+a_{6} e_{6}+a_{7} e_{7}\right)
$$

The norm of $x$ is

$$
N_{x}=|x|^{2}=\bar{x} x=\sum_{i=0}^{3} a_{i}^{2}-\sum_{i=4}^{7} a_{i}^{2}
$$

The modulus $|x|$ of a split octonion $x$, like the modulus of a split complex number, or split quaternion, can be real or imaginary and can be equal to 0 for $x \neq 0$ [2].

A split octonion $x$ is timelike, spacelike or lightlike, if $N_{x}>0, N_{x}<0$ or $N_{x}=0$, respectively. If $N_{x}=1$, then $x$ is called a unit split octonion.

The inverse of $x$ with $N_{x} \neq 0$, is

$$
x^{-1}=\frac{1}{N_{x}} \bar{x}
$$

Theorem 1. The algebra of real Zorn vector-matrices is isomorphic to the algebra 0 ' of split-octonions.

Proof: Real Zorn vector-matrices are linear combinations of the basis vector-matrices

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
0 & e_{1} \\
e_{1} & 0
\end{array}\right],\left[\begin{array}{cc}
0 & e_{2} \\
e_{2} & 0
\end{array}\right],\left[\begin{array}{cc}
0 & e_{3} \\
e_{3} & 0
\end{array}\right],} \\
& {\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{cc}
0 & -e_{1} \\
e_{1} & 0
\end{array}\right],\left[\begin{array}{cc}
0 & e_{2} \\
-e_{2} & 0
\end{array}\right],\left[\begin{array}{cc}
0 & -e_{3} \\
e_{3} & 0
\end{array}\right],}
\end{aligned}
$$

whose multiplication rules coincide with the multiplication rules of the basis elements

$$
\left\{e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}\right\}
$$

of the algebra $0^{\prime}$. Hence, we obtain the isomorphism of the algebra of real Zorn vector-matrices and the algebra $0^{\prime}$ [6].
Definition 4. Let

$$
x=a_{0} e_{0}+a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}+a_{4} e_{4}+a_{5} e_{5}+a_{6} e_{6}+a_{7} e_{7},
$$

be a split octonion and $\varphi_{x}: \mathrm{O}^{\prime} \rightarrow \mathrm{O}^{\prime}$ defined as follows:

$$
\varphi_{x}(\omega)=x \omega, \quad \omega \in \mathrm{O}^{\prime}
$$

The Hamilton's operator $\varphi_{x}$, could be represented as the matrix;

$$
\stackrel{+}{H}(x)=\left[\begin{array}{cccccccc}
a_{0} & -a_{1} & -a_{2} & -a_{3} & a_{4} & a_{5} & a_{6} & a_{7}  \tag{1}\\
a_{1} & a_{0} & -a_{3} & a_{2} & a_{5} & -a_{4} & -a_{7} & a_{6} \\
a_{2} & a_{3} & a_{0} & -a_{1} & a_{6} & a_{7} & -a_{4} & -a_{5} \\
a_{3} & -a_{2} & a_{1} & a_{0} & a_{7} & -a_{6} & a_{5} & -a_{4} \\
a_{4} & a_{5} & a_{6} & a_{7} & a_{0} & -a_{1} & -a_{2} & -a_{3} \\
a_{5} & -a_{4} & a_{7} & -a_{6} & a_{1} & a_{0} & a_{3} & -a_{2} \\
a_{6} & -a_{7} & -a_{4} & a_{5} & a_{2} & -a_{3} & a_{0} & a_{1} \\
a_{7} & a_{6} & -a_{5} & -a_{4} & a_{3} & a_{2} & -a_{1} & a_{0}
\end{array}\right],
$$

or equality

$$
\varphi_{x}=\left[\begin{array}{cc}
H^{+}(q) & N^{T} \\
N & H^{-}(q)
\end{array}\right]
$$

where $\stackrel{+}{H}, \bar{H}$ are Hamilton operators for quaternions and $N$ is a $4 \times 4$ matrix. By using the definition of $\stackrel{+}{H}$ the multiplication of the two split-octonions $x, \omega$ is given by $x \omega \stackrel{+}{H}(x) \omega$.

Theorem 2. Let $x, \omega \in \mathrm{O}^{\prime}$ and $\lambda \in \mathrm{R}$ be given. Then

1. $x=\omega \Leftrightarrow \stackrel{+}{H}(x)=\stackrel{+}{H}(\omega)$.
2. $\stackrel{+}{H}(x+\omega)=\stackrel{+}{H}(x)+\stackrel{+}{H}(\omega), \stackrel{+}{H}(\lambda x)=\lambda \stackrel{+}{H}(x)$.
3. $\stackrel{+}{H}(\bar{x})=[\stackrel{+}{H}(x)]^{T}, \stackrel{+}{H}(1)=I_{4}$.
4. $\operatorname{det} \stackrel{+}{H}(x)=\left(N_{x}\right)^{8}$.
5. $\operatorname{tr} \stackrel{+}{H}(x)=8 a_{0}$.

Proof: Follows from a direct verification.

Theorem 3. Let $x$ be a unit split octonion. Matrix generated by operator $\stackrel{+}{H}$ is a semi-orthogonal matrix, i.e.

$$
\stackrel{+}{H}(x) \varepsilon[\stackrel{+}{H}(x)]^{T}=[\stackrel{+}{H}(x)]^{T} \varepsilon \stackrel{+}{H}(x)=\varepsilon
$$

where $\varepsilon=\left[\begin{array}{cc}I_{4} & 0 \\ 0 & -I_{4}\end{array}\right]$.

## 3. HOMOTHETIC MOTIONS IN SEMI-EUCLIDEAN SPACE $\mathrm{E}_{4}^{8}$

Let us consider the following curve:

$$
\alpha: I \subset \mathrm{R} \rightarrow \mathrm{E}_{4}^{8}
$$

defined by $\alpha(t)=\left(a_{0}(t), a_{1}(t), a_{2}(t), a_{3}(t), a_{4}(t), a_{5}(t), a_{6}(t), a_{7}(t)\right)$ for every $t \in I$.
We suppose that the unit velocity curve $\alpha(t)$ is differentiable regular curve of order $r$. Let position vector of the curve be timelike. The operator $B$, corresponding to $a(t)$ is defined by the following matrix;

$$
B=\stackrel{+}{H}[\alpha(t)]=\left[\begin{array}{cccccccc}
a_{0}(t) & -a_{1}(t) & -a_{2}(t) & -a_{3}(t) & a_{4}(t) & a_{5}(t) & a_{6}(t) & a_{7}(t)  \tag{2}\\
a_{1}(t) & a_{0}(t) & -a_{3}(t) & a_{2}(t) & a_{5}(t) & -a_{4}(t) & -a_{7}(t) & a_{6}(t) \\
a_{2}(t) & a_{3}(t) & a_{0}(t) & -a_{1}(t) & a_{6}(t) & a_{7}(t) & -a_{4}(t) & -a_{5}(t) \\
a_{3}(t) & -a_{2}(t) & a_{1}(t) & a_{0}(t) & a_{7}(t) & -a_{6}(t) & a_{5}(t) & -a_{4}(t) \\
a_{4}(t) & a_{5}(t) & a_{6}(t) & a_{7}(t) & a_{0}(t) & -a_{1}(t) & -a_{2}(t) & -a_{3}(t) \\
a_{5}(t) & -a_{4}(t) & a_{7}(t) & -a_{6}(t) & a_{1}(t) & a_{0}(t) & a_{3}(t) & -a_{2}(t) \\
a_{6}(t) & -a_{7}(t) & -a_{4}(t) & a_{5}(t) & a_{2}(t) & -a_{3}(t) & a_{0}(t) & a_{1}(t) \\
a_{7}(t) & a_{6}(t) & -a_{5}(t) & -a_{4}(t) & a_{3}(t) & a_{2}(t) & -a_{1}(t) & a_{0}(t)
\end{array}\right]
$$

Definition 5. The 1-parameter Hamilton motions of a body in $\mathrm{E}_{4}^{8}$ are generated by transformation

$$
\left[\begin{array}{l}
Y \\
1
\end{array}\right]=\left[\begin{array}{ll}
B & C \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
X \\
1
\end{array}\right]
$$

or equivalently

$$
\begin{equation*}
Y=B X+C \tag{3}
\end{equation*}
$$

where $B=\stackrel{+}{H}[\alpha(t)]$ and $Y, X$ and $C$ are $n \times 1$ real matrices. $Y$ and $X$ correspond to the position vectors of the same point $P$.

Theorem 4. The Hamilton motion determined by equation (3) in semi-Euclidean space $\mathrm{E}_{4}^{8}$ is a homothetic motion.
Proof: Because $\alpha(t)$ does not pass through the origin, the matrix $B$ can be represented as

$$
B=h\left[\begin{array}{cccccccc}
a_{0}(t) / h & -a_{1}(t) / h & -a_{2}(t) / h & -a_{3}(t) / h & a_{4}(t) / h & a_{5}(t) / h & a_{6}(t) / h & a_{7}(t) / h \\
a_{1}(t) / h & a_{0}(t) / h & -a_{3}(t) / h & a_{2}(t) / h & a_{5}(t) / h & -a_{4}(t) / h & -a_{7}(t) / h & a_{6}(t) / h \\
a_{2}(t) / h & a_{3}(t) / h & a_{0}(t) / h & -a_{1}(t) / h & a_{6}(t) / h & a_{7}(t) / h & -a_{4}(t) / h & -a_{5}(t) / h \\
a_{3}(t) / h & -a_{2}(t) / h & a_{1}(t) / h & a_{0}(t) / h & a_{7}(t) / h & -a_{6}(t) / h & a_{5}(t) / h & -a_{4}(t) / h \\
a_{4}(t) / h & a_{5}(t) / h & a_{6}(t) / h & a_{7}(t) / h & a_{0}(t) / h & -a_{1}(t) / h & -a_{2}(t) / h & -a_{3}(t) / h \\
a_{5}(t) / h & -a_{4}(t) / h & a_{7}(t) / h & -a_{6}(t) / h & a_{1}(t) / h & a_{0}(t) / h & a_{3}(t) / h & -a_{2}(t) / h \\
a_{6}(t) / h & -a_{7}(t) / h & -a_{4}(t) / h & a_{5}(t) / h & a_{2}(t) / h & -a_{3}(t) / h & a_{0}(t) / h & a_{1}(t) / h \\
a_{7}(t) / h & a_{6}(t) / h & -a_{5}(t) / h & -a_{4}(t) / h & a_{3}(t) / h & a_{2}(t) / h & -a_{1}(t) / h & a_{0}(t) / h
\end{array}\right]=h A
$$

where $h: I \subset \mathrm{R} \rightarrow \mathrm{R}$,

$$
t \rightarrow h(t)=|\alpha(t)|=\sqrt{\left|a_{0}^{2}(t)+a_{1}^{2}(t)+a_{2}^{2}(t)+a_{3}^{2}(t)-a_{4}^{2}(t)-a_{5}^{2}(t)-a_{6}^{2}(t)-a_{7}^{2}(t)\right|} .
$$

So, we find $A \varepsilon A^{T}=\varepsilon$ and $\operatorname{det} A=1$, thus B is a homothetic matrix and equation (3) determines a homothetic motion.
Example 1. Let $\alpha: I \subset \mathrm{R} \rightarrow \mathrm{E}_{4}^{8}$ be a curve given by $\alpha(t)=(t, \sinh t,-t,-2, \cosh t, t,-t, 1)$. Since $|\dot{\alpha}(t)|=1$, then $\alpha(t)$ is a unit velocity curve. Because $\alpha(t)$ does not pass through the origin, the matrix $B$ can be represented as

$$
B=\left[\begin{array}{cccccccc}
t & -\sinh t & t & 2 & \cosh t & t & -t & 1 \\
\sinh t & t & 2 & -t & t & -\cosh t & -1 & -t \\
-t & -2 & t & -\sinh t & -t & 1 & -\cosh t & -t \\
-2 & t & \sinh t & t & 1 & t & t & -\cosh t \\
\cosh t & t & -t & 1 & t & -\sinh t & t & 2 \\
t & -\cosh t & 1 & t & \sinh t & t & -2 & t \\
-t & -1 & -\cosh t & t & -t & 2 & t & \sinh t \\
1 & -t & -t & -\cosh t & -2 & -t & -\sinh t & t
\end{array}\right]
$$

where
$h(t)=|\alpha(t)|=\sqrt{\left|t^{2}+\sinh ^{2} t+t^{2}+4-\cosh ^{2} t-t^{2}-t^{2}-1\right|}=\sqrt{2}$. We find $A \varepsilon A^{T}=A^{T} \varepsilon A=\varepsilon, \operatorname{det} A=1$, where $\varepsilon=\left[\begin{array}{cc}I_{4} & 0 \\ 0 & -I_{4}\end{array}\right]$.
Theorem 5. The derivation operator $\dot{B}=\frac{d B}{d t}$ of the Hamilton operator $B=h A$ is a semi-orthogonal matrix.
Proof: By (2), $\dot{B} \varepsilon \dot{B}^{T}=\dot{B}^{T} \varepsilon \dot{B}=\varepsilon$, and $\operatorname{det} \dot{B}=1$. Then theorem is proved.
Colorally 1. In $\mathrm{E}_{4}^{8}$, the motion is a regular motion, and it is independent of $h$.

## 4. POLE POINTS AND POLE CURVES OF THE MOTION IN SEMI-EUCLIDEAN SPACE $\mathrm{E}_{4}^{8}$

To find the pole points of the Hamilton motion determined by equation (3), we have to solve the equation

$$
\begin{equation*}
\dot{B} X+\dot{C}=0 \tag{4}
\end{equation*}
$$

Any solution of the equation (4) is a pole point of the motion at that instant in $R_{\circ}$. Since $\dot{B}$ is regular, the equation (4) has only one solution, i.e., $X_{\circ}=(-\dot{B})^{-1} \dot{C}=0$ at every instant $t$. This pole point in the fixed system is

$$
X=B(-\dot{B})^{-1} \dot{C}+C
$$

Theorem 6. During the homothetic motion of semi-Euclidean space of 8 -dimensions, there is a unique instantaneous pole point at every time $t$.

## 5. ACCELERATION CENTERS OF ORDER (R-1) OF THE MOTION

Definition 6. The set of zeros of the equation of the sliding acceleration of order r is called the acceleration center of order ( $r$ 1) [9].

In order to find the acceleration center of order ( $r-1$ ) for the equation (3) according to definition above, we find the solution of the equation

$$
\begin{equation*}
B^{(r)} X+C^{(r)}=0, \tag{5}
\end{equation*}
$$

Since the curve $\alpha(t)$ is a regular curve of order $r$, then

$$
\sum_{i=0}^{3}\left[a_{i}^{(r)}\right]^{2}-\sum_{i=4}^{7}\left[a_{i}^{(r)}\right]^{2} \neq 0
$$

Furthermore,

$$
\operatorname{det} B^{(r)}=\left\{\sum_{i=0}^{3}\left[a_{i}^{(r)}\right]^{2}-\sum_{i=4}^{7}\left[a_{i}^{(r)}\right]^{2}\right\}^{4},
$$

then $\operatorname{det} B^{(r)} \neq 0$. Therefore, matrix $B^{(r)}$ has an inverse, and, by equation (5), the acceleration center of order ( $r-1$ ) at every $t$ instant, is

$$
x=\left[B^{(r)}\right]^{-1} \cdot\left[-C^{(r)}\right] .
$$

## CONFLICT OF INTEREST

No conflict of interest was declared by the authors.

## REFERENCES

[1] Jafari M., Yayli Y., Homothetic motions at $\mathrm{E}_{\alpha \beta}^{4}$, International journal of contemporary mathematical sciences, vol. 5, no. 47: (2010) 2319-2326.
[2] Jafari M., Real matrix representation of split octonions, Submitted for publication.
[3] Kula, L., Yayli, Y., Homothetic motions in semiEuclidean space $\mathrm{E}_{2}^{4}$, Mathematical proceedings of the Royal Irish academy, 105A1 (2005) 9-15.
[4] Kabadayi H., Yayli, Y., Homothetic motions at $E^{4}$ with bicomplex numbers, Advances in applied Clifford algebras, 21 (2011) 541-546.
[5] Nurowski P. Split octonions and Maxwell equations, Acta physica polonica A, 116 (2009) 992-993.
[6] Rosenfeld B., Geometry of Lie groups, Kluwer Academic Publishers, Netherlands, 1997.
[7] Split Octonion, http://en.wikipedia.org/wiki/Splitoctonion
[8] Yayli, Y., Homothetic motions at $E^{4}$, Mechanism and machine theory 27,(1992) 303-305.
[9] Yayli Y., Bukuc B., Homothetic motions at $E^{8}$ with Cayley numbers, Mechanism and machine theory, 3 (1995) 417-420.


[^0]:    ${ }^{\text {* }}$ Corresponding author, e-mail: mjafari@ science.ankara.edu.tr, mj_msc@yahoo.com

