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1. INTRODUCTION 

 

The Fibonacci sequence plays an important role in applied 

mathematics, number theory and many other areas. The 

Fibonacci sequence is defined by the following recurrence 

relation, for n ≥ 1; 

 

𝐹𝑛+1 = 𝐹𝑛+𝐹𝑛−1 

 

where 𝐹0 = 0, 𝐹1 = 1. In [1], Tuglu et al. investigated finite 

sum of the reciprocal Fibonacci numbers 

 

 nF = ∑
1

𝐹𝑘

𝑛

𝑘=1

  

 

which is called harmonic Fibonacci numbers. Then the authors 

gave some combinatorics properties of harmonic Fibonacci 

numbers as follows:  

 

∑(
𝑘

𝑚
) kF

𝑛−1

𝑘=0

= (
𝑛

𝑚 + 1
) nF −∑(

𝑘 + 1

𝑚 + 1
)
1

𝐹𝑘+1

𝑛−1

𝑘=0

 , (1.1) 

  

∑
kF

𝑘 + 1

𝑛−1

𝑘=0

= 𝐻𝑛 nF −∑
𝐻𝑘+1
𝐹𝑘+1

𝑛−1

𝑘=0

 , (1.2) 

 

∑ kF

𝑛

𝑘=1

= (𝑛 + 1) 1nF −∑
𝑘 + 1

𝐹𝑘+1

𝑛

𝑘=0

 , (1.3) 

 

∑
2

kF

𝑛

𝑘=1

= (𝑛 + 1)
2

1nF −∑
𝑘 + 1

𝐹𝑘+1

𝑛

𝑘=0

(2 kF +
1

𝐹𝑘+1
)  , (1.4) 

 

where 𝑚  is a nonnegative integer and 𝐻𝑛  is the 𝑛𝑡ℎ 

harmonic number. 

 

Recently, there have been many papers on the norms of some 

special matrices [2-6]. For example in [2], Solak has given 

some bounds for the circulant matrices with classical Fibonacci 

and Lucas numbers entries. In [3], Kocer et al. obtained norms 

of circulant and semicirculant matrices with Horadams numbers. 

In [4], Shen gave upper and lower bounds for the Toeplitz 

matrices involving 𝑘 −Fibonacci and  𝑘 −Lucas numbers. In 
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[5], Bahşi and Solak defined special matrices with harmonic 

numbers and they gave spectral norms, Euclidean norms and 

determinants of these matrices. In [6], Zhou et al. gave spectral 

norms of circulant matrices involving binomial coefficients and 

harmonic numbers. 

 

Motivated by the above papers, we investigate spectral norms 

of circulant matrices involving harmonic Fibonacci numbers. 

Then we give Euclidean norms of some special matrices with 

harmonic Fibonacci numbers. Now we give some definitions 

and lemmas related to our study. 

 

Definition 1. [7] A circulant matrix is an 𝑛 × 𝑛 matrix with 

the following form: 

 

𝐶 =

(

 
 

𝑐0 𝑐1 𝑐2 ⋯ 𝑐𝑛−2 𝑐𝑛−1
𝑐𝑛−1 𝑐0 𝑐1 ⋯ 𝑐𝑛−3 𝑐𝑛−2
𝑐𝑛−2 𝑐𝑛−1 𝑐0 ⋯ 𝑐𝑛−4 𝑐𝑛−3
⋮ ⋮ ⋮ ⋮ ⋮
𝑐1 𝑐2 𝑐3 ⋯ 𝑐𝑛−1 𝑐0 )

 
 

. 

 

Obviously, the circulant matrix 𝐶 is determined by its first row 

elements 𝑐0,  𝑐1,  𝑐2, … ,  𝑐𝑛−1,  thus we denote 

𝐶 = 𝐶𝑖𝑟𝑐(𝑐0,  𝑐1,  𝑐2, … ,  𝑐𝑛−1). Let 𝐴 = (𝑎𝑖𝑗) be any 𝑚 × 𝑛 

matrix. The well known Euclidean norm of matrix 𝐴 is 

 

‖𝐴‖𝐸 = √∑∑|𝑎𝑖𝑗|
2

𝑛

𝑗=1

𝑚

𝑖=1

 , 

 

and also the spectral norm of 𝐴 matrix is 

 

‖𝐴‖2 = √max
1≤𝑖≤𝑛

𝜆𝑖(𝐴
𝐻𝐴)  , 

 

where 𝜆𝑖(𝐴
𝐻𝐴)  is an eigenvalue of 𝐴𝐻𝐴  and 𝐴𝐻  is 

conjugate transpose of matrix 𝐴. Then the following inequality 

holds: 

 
1

√𝑛
‖𝐴‖𝐸 ≤ ‖𝐴‖2 ≤ ‖𝐴‖𝐸 . (1.5) 

 

In [8], finite difference of 𝑓(𝑥) is defined as 

 

Δ𝑓(𝑥) = 𝑓(𝑥 + 1) − 𝑓(𝑥) . 
 

Δ  operator has an inverse, the anti-difference operator Σ 

defined as follows. Let 𝑎 and 𝑏 are integers with 𝑏 ≥ 𝑎. If 

Δ𝑓(𝑥) = 𝑔(𝑥) then 

 

∑𝑔(𝑥)𝛿𝑥 

𝑏

𝑎

= ∑𝑔(𝑥)

𝑏−1

𝑥=𝑎

= 𝑓(𝑏) − 𝑓(𝑎) . 

 

Anti-difference operator has some properties as follows: 

 

∑𝑢(𝑥)Δ𝑣(𝑥)𝛿𝑥 

𝑏

𝑎

= 𝑢(𝑥)𝑣(𝑥)|𝑎
𝑏+1 −∑𝑣(𝑥 + 1)Δ𝑢(𝑥)𝛿𝑥

𝑏

𝑎

 (1.6) 

and for 𝑚 ≠ −1, 

 

∑𝑥𝑚 𝛿𝑥 =
𝑥𝑚+1

𝑚+ 1
 , 

 

where 𝑥𝑚 = 𝑥(𝑥 − 1)(𝑥 − 2)⋯ (𝑥 − 𝑚 + 1). 
 

 

2. MAIN RESULTS 

 

Theorem 1. For 𝑚 nonnegative integer, the spectral norm of 

the matrix  

 

𝐴 = 𝐶𝑖𝑟𝑐 ((
0

𝑚
) 0F , (

1

𝑚
) 1F ,  … , (

𝑛 − 1

𝑚
) 1nF ) 

 

is 

‖𝐴‖2 = (
𝑛

𝑚 + 1
) nF −∑(

𝑘 + 1

𝑚 + 1
)
1

𝐹𝑘+1

𝑛−1

𝑘=0

 . 

 

Proof. Since the circulant matrix 𝐴 is normal, its spectral 

norm equal to spectral radius. Furthermore, 𝐴 is irreducible 

and its entries are nonnegative the spectral radius of the 𝐴 

matrix is equal to its Perron roots. Let 𝜐  denote all ones 

vectors of order 𝑛 (𝜐 = (1,1,… ,1)𝑇 ). Then 

 

𝐴𝜐 = (∑(
𝑘

𝑚
) kF

𝑛−1

𝑘=0

) υ . 

 

As, ∑ (𝑘
𝑚
) kF𝑛−1

𝑘=0  is an eigenvalue of 𝐴  associated with a 

positive eigenvector, it is necessarily the Perron value of 𝐴. 

Therefore from the (1.1), we have 

 

‖𝐴‖2 = (
𝑛

𝑚 + 1
) nF −∑(

𝑘 + 1

𝑚 + 1
)
1

𝐹𝑘+1

𝑛−1

𝑘=0

 . 

 

Corollary 1. We have 

 

√∑(
𝑘

𝑚
)
2

2

kF

𝑛−1

𝑘=0

≤ (
𝑛

𝑚 + 1
) nF −∑(

𝑘 + 1

𝑚+ 1
)
1

𝐹𝑘+1

𝑛−1

𝑘=0

 ≤ √𝑛∑(
𝑘

𝑚
)
2

2

kF

𝑛−1

𝑘=0

. 

 

Proof. The proof is trivial from the definition of the Euclidean 

norm and the relation between Euclidean norm and spectral 

norm in (1.5). 

 

Theorem 2. The spectral norm of the matrix 

 

𝐵 = 𝐶𝑖𝑟𝑐 (
0F

1
,

1F

2
,  … ,

1nF

𝑛
) 

 

is 
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‖𝐵‖2 = 𝐻𝑛 nF −∑
𝐻𝑘+1
𝐹𝑘+1

𝑛−1

𝑘=0

. 

 

Proof. Analysis similar to that in the proof of Theorem 1 shows 

that 

 

‖𝐵‖2 = ∑
kF

𝑘 + 1

𝑛−1

𝑘=0

 

 

and from the (1.2) 

 

‖𝐵‖2 = 𝐻𝑛 nF −∑
𝐻𝑘+1
𝐹𝑘+1

𝑛−1

𝑘=0

 . 

 

Corollary 2. We have 

 

√∑

2

kF

(𝑘 + 1)2

𝑛−1

𝑘=0

≤ 𝐻𝑛 nF −∑
𝐻𝑘+1
𝐹𝑘+1

𝑛−1

𝑘=0

≤ √𝑛∑

2

kF

(𝑘 + 1)2

𝑛−1

𝑘=0

 . 

 

Proof. The proof is trivial from the definition of the Euclidean 

norm and the relation between Euclidean norm and spectral 

norm in (1.5). 

 

Lemma 1. For the harmonic Fibonacci numbers, we have 

 

∑𝑘
2

kF

𝑛

𝑘=1

=
(𝑛 + 1)2

2

2

1nF −
1

2
∑

(𝑘 + 1)2

𝐹𝑘+1

𝑛

𝑘=1

(2 kF +
1

𝐹𝑘+1
)  . 

 

Proof. The proof is based on the properties of difference 

operator. Let 𝑢(𝑘) =
2

kF  and Δ𝑣(𝑘) = 𝑘1 be in (1.6). Then 

we obtain Δ𝑢(𝑘) =
1

𝐹𝑘+1
(2

kF +
1

𝐹𝑘+1
)  and 𝑣(𝑘) =

𝑘2

2
.

 

By 

using the equation (1.6), we have 

 

∑𝑘
2

kF

𝑛

𝑘=1

=
(𝑛 + 1)2

2

2

1nF −
1

2
∑

(𝑘 + 1)2

𝐹𝑘+1

𝑛

𝑘=1

(2 kF +
1

𝐹𝑘+1
). 

 

Lemma 2. For the harmonic Fibonacci numbers, we have 

 

∑(𝑛 − 𝑘)
2

n kF

𝑛−1

𝑘=1

=
(𝑛 + 1)2

2

2

2nF − 𝑛
2

1nF

−
1

2
∑

(𝑘 + 1)(2𝑛 − 𝑘)

𝐹𝑛+𝑘+1

𝑛−1

𝑘=1

(2
n kF

+
1

𝐹𝑛+𝑘+1
) 

 

Proof. Repeated application of equation (1.6) enables us to 

write 𝑢(𝑘) =
2

n kF  and Δ𝑣(𝑘) = 𝑛 − 𝑘 . Then we obtain 

Δ𝑢(𝑘) =
1

𝐹𝑛+𝑘+1
(2 n kF +

1

𝐹𝑛+𝑘+1
)  and 𝑣(𝑘) = 𝑛𝑘 −

𝑘2

2
. By 

using the equation (1.6), we have 

∑(𝑛 − 𝑘)
2

n kF

𝑛−1

𝑘=1

=
(𝑛 + 1)2

2

2

2nF − 𝑛
2

1nF

−
1

2
∑

(𝑘 + 1)(2𝑛 − 𝑘)

𝐹𝑛+𝑘+1

𝑛−1

𝑘=1

(2 n kF +
1

𝐹𝑛+𝑘+1
)  . 

 

Lemma 3. For the harmonic Fibonacci numbers, we have 

 

∑2𝑘−1
2

kF

𝑛−1

𝑘=1

= 2𝑛−1
2

nF −∑
2𝑘

𝐹𝑘+1

𝑛−1

𝑘=0

(2 kF +
1

𝐹𝑘+1
). 

 

Proof. Let 𝑢(𝑘) =
2

kF  and Δ𝑣(𝑘) = 2𝑘−1 be in (1.6). Then 

we obtain Δ𝑢(𝑘) =
1

𝐹𝑘+1
(2 kF +

1

𝐹𝑘+1
) and 𝑣(𝑘) = 2𝑘−1. By 

using the equation (1.6), we have 

 

∑2𝑘−1
2

kF

𝑛−1

𝑘=1

= 2𝑛−1
2

nF −∑
2𝑘

𝐹𝑘+1

𝑛−1

𝑘=0

(2 kF +
1

𝐹𝑘+1
). 

 

Definition 2. Let 𝑃 = [
iF ]
𝑖=1

𝑛

,  𝐻 = [
1i j F ]
𝑖,𝑗=1

𝑛

 and 

𝑅 = [√(𝑖−1
𝑛−𝑗
)

iF ]
𝑖=1

𝑛

 are matrices, which entries consist of 

harmonic Fibonacci numbers such that these matrices are 

 

𝑃 =

(

 
 
 

1 1 1 ⋯ 1
2 2 2 ⋯ 2
5

2

5

2

5

2
⋯

5

2

⋮ ⋮ ⋮ ⋮

nF nF nF ⋯ nF
)

 
 
 

, (2.1) 

 

𝐻 =

(

 
 
 
 
 

1F 2F 3F ⋯
nF

2F 3F 4F ⋯
1nF

3F 4F 5F ⋯
2nF

⋮ ⋮ ⋮ ⋮

nF 1nF 2nF ⋯
2 1nF )

 
 
 
 
 

, (2.2) 

 

𝑅 =

(

 
 
 
 
 
 
 

0 ⋯ 0 0
1F

0 ⋯ 0
2F 2F

0 ⋯
3F √2

3F 3F

⋮ ⋮ ⋮ ⋮

nF ⋯ √(
𝑛 − 1

2
)

nF √(
𝑛 − 1

1
)

nF nF
)

 
 
 
 
 
 
 

. (2.3) 

 

Now, we give some theorems on the norms of these matrices by 

using the difference operator. 
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Theorem 3. The eigenvalues of the 𝑛 × 𝑛 matrix 𝑃 are  

 

𝜆1 = (𝑛 + 1) 1nF −∑
𝑘 + 1

𝐹𝑘+1

𝑛

𝑘=0

 , 

and  
 

𝜆𝑚 = 0 
 

for 𝑚 = 2,3,… , 𝑛. 
 

Proof. The eigenvalues of the matrix 𝑃  are roots of the 
|𝜆𝐼 − 𝑃| = 0  such that  

 

|𝜆𝐼 − 𝑃| =
|

|

𝜆 − 1 −1 −1 ⋯ −1
−2 𝜆 − 2 −2 ⋯ −2

−
5

2
−
5

2
𝜆 −

5

2
⋯ −

5

2

⋮ ⋮ ⋮ ⋮

−
nF −

nF −
nF ⋯ 𝜆 −

nF

|

|
 

 

From the properties of determinant we can easy see  

 

|𝜆𝐼 − 𝑃| =
|

|

𝜆 − 1 −𝜆 −𝜆 ⋯ −𝜆
−2 𝜆 0 ⋯ 0

−
5

2
−
5

2
𝜆 ⋯ 0

⋮ ⋮ ⋮ ⋮

−
nF 0 0 ⋯ 𝜆

|

|
. 

 

We calculate the determinant, we obtain 

 

|𝜆𝐼 − 𝑃| = 𝜆𝑛−1 (𝜆 − 1 − 2 −
5

2
−⋯ −

nF ). 

 

If we solve the characteristic equation 

 

𝜆𝑛−1 (𝜆 − 1 − 2 −
5

2
−⋯ −

nF ) = 0. 

 

The eigenvalues of the matrix 𝑃 are  

 

𝜆1 = 1 + 2 +
5

2
−⋯+ nF  

 

= ∑ kF

𝑛

𝑘=1

 

 

= (𝑛 + 1) nF −∑
𝑘 + 1

𝐹𝑘+1

𝑛

𝑘=0

 

 

and 

 

𝜆𝑚 = 0 

 

for 𝑚 = 2,3,… , 𝑛. 
 

Theorem 4. The Euclidean norm of the matrix 𝑃 is 

 

‖𝑃‖𝐸 = √𝑛(𝑛 + 1)
2

1nF − 𝑛∑
𝑘 + 1

𝐹𝑘+1

𝑛

𝑘=0

(2 kF +
1

𝐹𝑘+1
)  . 

 

Proof. Definition of the Euclidean norm and from the (1.4), we 

have  

 

‖𝑃‖𝐸 = √𝑛∑
2

kF

𝑛

𝑘=1

 

 

= √𝑛(𝑛 + 1)
2

1nF − 𝑛∑
𝑘 + 1

𝐹𝑘+1

𝑛

𝑘=0

(2 kF +
1

𝐹𝑘+1
)  . 

 

Theorem 5. The spectral norm 𝑃 is 

 

‖𝑃‖2 = √𝑛(𝑛 + 1)
2

1nF − 𝑛∑
𝑘 + 1

𝐹𝑘+1

𝑛

𝑘=0

(2 kF +
1

𝐹𝑘+1
)  . 

 

Proof. The spectral norm of 𝑃 is  

 

‖𝑃‖2 = √max
1≤𝑖≤𝑛

𝜆𝑖(𝑃
𝐻𝑃) 

 

where 𝜆𝑖(𝑃
𝐻𝑃) are eigenvalues of 𝑃𝐻𝑃 and 𝑃𝐻 is conjugate 

transpose of 𝑃. Therefore 

 

𝑃𝐻𝑃 =

(

 
 
 
 

∑ 2

kF
𝑛
𝑘=1 ∑ 2

kF
𝑛
𝑘=1 ⋯ ∑ 2

kF
𝑛
𝑘=1

∑ 2

kF
𝑛
𝑘=1 ∑ 2

kF
𝑛
𝑘=1 ⋯ ∑ 2

kF
𝑛
𝑘=1

⋮ ⋮ ⋮

∑ 2

kF
𝑛
𝑘=1 ∑ 2

kF
𝑛
𝑘=1 ⋯ ∑ 2

kF
𝑛
𝑘=1 )

 
 
 
 

  

 

The eigenvalues of the matrix 𝑃𝐻𝑃 are 

 

𝜆1 = ∑
2

kF

𝑛

𝑘=1

 

 

and  

 

𝜆𝑚 = 0 
 

where 𝑚 = 2,3,… , 𝑛. From (1.4) we obtain 

 

‖𝑃‖2 = √𝑛(𝑛 + 1)
2

1nF − 𝑛∑
𝑘 + 1

𝐹𝑘+1

𝑛

𝑘=0

(2 kF +
1

𝐹𝑘+1
)  . 
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Theorem 6. For the Euclidean norm of the 𝐻 matrix 

 

‖𝐻‖𝐸
2 =

(𝑛 + 1)2

2

2

2nF +
𝑛2

2

2

1nF −
1

2
[
(𝑛 + 1)2

𝐹𝑛+1
(2 nF +

1

𝐹𝑛+1
)] 

−
1

2
∑(𝑘 + 1) [

𝑘

𝐹𝑘+1
(2 kF +

1

𝐹𝑘+1
) +

2𝑛 − 𝑘

𝐹𝑛+𝑘+1
(2 n kF +

1

𝐹𝑛+𝑘+1
)]

𝑛−1

𝑘=1

 

 

is valid. 

 

Proof. Definition of Euclidean norm 

 

‖𝐻‖𝐸
2 = ∑𝑘

2

kF

𝑛

𝑘=1

+∑(𝑛 − 𝑘)
2

n kF

𝑛−1

𝑘=1

 . 

 

Therefore from the Lemma 1 and Lemma 2 

 

‖𝐻‖𝐸
2 =

(𝑛 + 1)2

2

2

2nF +
𝑛2

2

2

1nF −
1

2
[
(𝑛 + 1)2

𝐹𝑛+1
(2 nF +

1

𝐹𝑛+1
)] 

−
1

2
∑(𝑘 + 1) [

𝑘

𝐹𝑘+1
(2 kF +

1

𝐹𝑘+1
) +

2𝑛 − 𝑘

𝐹𝑛+𝑘+1
(2 n kF +

1

𝐹𝑛+𝑘+1
)] .

𝑛−1

𝑘=1

 

 

Theorem 7. The Euclidean norm of the matrix 𝑅 is 

 

‖𝑅‖𝐸 = √2
𝑛−1 2

nF −∑
2𝑘

𝐹𝑘+1

𝑛−1

𝑘=0

(2 kF +
1

𝐹𝑘+1
). 

 

Proof. From the definition of Euclidean norm 

 

‖R‖E
2 = ∑2𝑘−1

2

kF

𝑛−1

𝑘=1

. 

 

By using the Lemma 3, we obtain  

 

‖𝑅‖𝐸 = √2
𝑛−1 2

nF −∑
2𝑘

𝐹𝑘+1

𝑛−1

𝑘=0

(2 kF +
1

𝐹𝑘+1
). 
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