ON ONE SIDED STRONGLY PRIME IDEALS

Feride Kuzucuoğlu

Received 20 : 05 : 2010 : Accepted 05 : 07 : 2010

Abstract
The notion of strongly prime right ideal is analogous to that of completely prime ideal in a commutative ring. We prove that the intersection of all strongly prime right ideals of a ring R coincides with the Levitzki radical of this ring. We also give various conditions on a noncommutative ring R so that R is 2-primal.

Keywords: Prime right ideal, Strongly prime right ideal, 2-primal ring, AC-ring, Regular ring.

2000 AMS Classification: 17B40, 16W25.

1. Introduction
Throughout this article R denotes an associative ring and $I \neq R$ a right ideal of R. In [6], a right ideal I in R is called a prime right ideal if $AB \subseteq I$ implies that either $A \subseteq I$ or $B \subseteq I$ for any right ideals A,B of R. In [3], the right ideal I was defined to be strongly prime if for each x and y in R, $xIy \subseteq I$ and $xy \in I$ imply that either $x \in I$ or $y \in I$. Let $m(R)$ (resp., $p(R)$, $sp(R)$) be the set of maximal right ideals (resp., prime right ideals, strongly prime right ideals) of R. Clearly, any strongly prime right ideal is prime. But the converse need not be true. For example, the zero ideal in the ring of all $n \times n$ matrices over a division ring is a prime right ideal but not strongly prime.

Recall that a two-sided ideal P of R is completely prime (completely semiprime) if $ab \in P$ implies $a \in P$ or $b \in P$ (if $a^2 \in P$ implies $a \in P$) for $a,b \in R$. Note that any ideal (two-sided) of a ring is strongly prime if and only if it is completely prime.

The goal of this paper is to prove that the intersection rad$_R(R)$ of all strongly prime right ideals coincides with the largest locally nilpotent ideal of the ring R. Also, we give some characterizations of rings through strongly prime right ideals.

*Department of Mathematics, Hacettepe University, 06532 Beytepe, Ankara, Turkey.
E-mail: feridek@hacettepe.edu.tr