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Abstract 
 
An asymptotic test for heteroskedasticity has been developed. The test does not rely on any assumption about 
heteroskedasticity, and introduces two alternative statistics based on the same idea. Power of these two 
alternative test statistics has been measured by Monte Carlo simulations. For large samples they performed fairly 
well, whereas for sample sizes ≤ 100, their power was influenced by the structure of the heteroskedasticity 
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Bu makalede heteroskedastisiteye (değişen varyans) yönelik asimptotik bir test geliştirilmiştir. Test, herhangi 
bir heteroskedastisite varsayımına dayanmamaktadır ve aynı düşünceye dayanan iki alternatif istatistik 
sunmaktadır. Bu iki test istatistiğinin güçleri Monte Carlo simülasyonları ile ölçülmüştür. Büyük örneklemler 
için oldukça iyi performansları olamsına karşın 100’den küçük örneklem büyüklüğü için testin gücü 
heteroskedastisitenin yapısından etkilenmektedir. 
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1. Introduction 

 
There are several tests to detect heteroskedasticity. Some of these tests are based on an 
assumption on the structure of the heteroskedasticity. Goldfeld-Quandt test and Park test can 
be given as examples of this type (Goldfeld and Quandt, 1965:540-541 and Park, 1964:888). 
On the other hand, some of these heteroskedasticity tests require an estimation of an auxiliary 
regression model. For instance, White test is based on the significance of an auxiliary 
regression which involves nonconstant disturbance variance (in practice ordinary squared 

residuals- 2
ie ) as the dependent variable and regressors with higher orders and cross-products 

as explanatory variables (White, 1980:821-827). Another example is Breusch-Pagan-Godfrey 
test (Breusch and Pagan, 1979:1288-1290). In this test, a model in which ordinary residual 
squares are taken as dependent variable and some (or all) of the regressors are taken as 
independent variable is needed to be estimated. Another test that requires estimation of an 
auxiliary regression is Ramsey test (Ramsey, 1969:252). In this test, a model, in which fitted 

values ( iŶ ) and their higher orders are regressors and ordinary residuals are taken as 

dependent variable, is used to determine the heteroskedasticity. Moreover, Glejser (Glejser, 
1969:316) suggested several auxiliary models addition to Park test.  
There are also other tests like modified Levene test (Glass, 1966:188 and Neter et al., 
1990:765) which has the same logic that of the Goldfeld-Quandt test, and Spearman 
correlation test based on the rank correlation between regressors and residuals (Gujarati, 
1999:372). There are other tests if repetitive data is available like Bartlett test (Glaser, 
1976:488) and Hartley test (see Neter et al., 1990:764).  
As it can be seen above, these kinds of tests suggest an assumption on the structure of 
heteroskedasticity or require a kind of auxiliary regression that depends on explanation of the 
regressors or estimated observations on ordinary residuals. More clearly, they seek a structure 
which can be modeled between residuals and regressors. If there is heteroskedasticity which 
does not depend on the regressors or does not satisfy the assumptions, these tests can fail to 
catch the existence of heteroskedasticity.  
In fact, in the definition of heteroskedasticity, no statistical relationship is assumed for εij and 
Xj. Having an insignificant statistical relationship between the two, does not necessarily mean 
that the disturbance variances are all the same.  
In this paper, a diagnostic test for heteroskedasticity will be introduced. This test does not 
suppose special assumption for heteroskedasticity and does not require estimation of an 
auxiliary regression model. The test, here to be developed is asymptotic and depends on the 
ordinary least square residuals.  
 

2. The Underlying Idea 
 
Suppose we have two populations whose means are equal to each other and let the latter has 
much greater variance than the former. Consider that we draw an observation from each of 
these populations independently by random sampling. Here, it is reasonable to assume that the 
observation which comes from the latter tends to be larger in absolute value than the 
observation which comes from the former. On the contrary, if we have many populations with 
same mean and variance and if we draw an observation from each of these populations 
independently by random sampling, it can be expected that the sample observations have to 
differ in a certain band. We can extend this idea to regression model which has homoskedastic 
disturbances. When the model is estimated and the residuals are calculated, we eliminate the 
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trend and for the rest, the error structure which is represented by residuals remains. Therefore, 
if homoskedasticity assumption holds, by the analogy given above, the residuals will vary 
within a band which graphically exhibits an approximate rectangular shape, but if 
homoskedasticity assumption does not hold, the situation will be different.  
The graph of residuals against the independent variable(s) which is ordered in ascending 

manner, or against the fitted values ( iŶ ) can be like one of the graphs depicted in Fig. 1.  

 

 
Figure 1: Some graphs of the residuals against independent variable or fitted values 
 
Fig. 1a shows a homoskedastic residual structure. Fig. 1b and Fig. 1c shows outward-opening 
and inward-opening funnel patterns which are the indicators of  heteroskedasticity structure 

that is assumed in the Goldfeld-Quandt test ( 222
ii Xσσ = ). Fig. 1d depicts the elliptic shape 

heteroskedasticity structure. In this case, Goldfeld-Quandt test and modified Levene test 
which have the same logic are unable to detect the heteroskedasticity. Fig. 1e shows the 
irregular type of heteroskedasticity. In this case, variances of some disturbances are different 
from others but this does not obey to a significant rule. Many tests mentioned above become 
unable to catch the heteroskedasticity for this case.  
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3. Theory, Test Statistic and its Alternative 

 
 
Homoskedasticity assumption for linear model can be shown as follows:  
 

ijVar ε( | )jX = 2( ijE ε | )jX = σ2 (constant),  

 
where εij is disturbance term, Xj is the level of independent variable and σ2 is the disturbance 
variance. The same assumption can be equivalently expressed using the dependent variable 
Yij:  
 

ijYVar( | )jX = σ2 (constant) 

 
The violation of this assumption-heteroskedasticity can be shown as follows:  
 

ijVar ε( | )jX = 2
jσ  

 
which means variances of disturbances are not equal to each other for every level of X. 
Consider the model  
 

εβ += XY  

 

where Y  is the n x 1 vector of observations, X  is an n x p matrix containing p 

nonstochastic vectors, β  is the p x 1 parameter vector and ε  is the n x 1 stochastic 

disturbance vector which satisfies the properties 
 

( ) 0=εE  ,  ( ) IVar
2σε =  and ε ~ ( )IN

2,0 σ .  

 
From the previous discussion the homoskedasticity hypothesis can be expressed as  
 

H0 : ci =2σ  for ∀ i, where c is a constant  

And because ε  is unobservable for sample we can write 

 

H0 : cei =2  for ∀ i, where c is a constant.  

 
Here, we idealized the homoskedasticity situation by assuming that squared residuals or 
absolute residuals are equal to the same amount which gives the sense that residuals are 
derived from a homoskedastic population, or more clearly, from subpopulations whose 
variances are equal to the same amount (σ2) in accordance with the previous discussion.  
It is obvious that if n is odd it is impossible for ∀ i, ei = ±√c because of the restriction 

∑ = 0ie , but it seems plausible, however, when n→∞, the relative difference between 
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absolute residuals decays to zero. Here √c analogically represents the disturbance standard 
deviation.  

The test statistic depends on the idea that sum of squares of errors (∑ 2
ie ) becomes greater 

than the expression ( ) nei

2

∑  when the relative difference of squared (or absolute) residuals 

becomes bigger which indicates the heteroskedasticity.  
In an idealized manner, if all ei = ±√c, the two expressions become equal to each other: 
 

( ) nence ii

22 ∑∑ ==  

 

But if some squared residuals are relatively different than the other ones, ∑ 2
ie  will be greater 

than ( ) nei

2

∑ . The statistic of the test relies on the different behaviors of these two 

expressions on the two cases.  
 
 Theory 
 
Proposition 1:  

 
When the number of observations goes to infinity (n→∞) and under the null hypothesis which 
implies the homoskedasticity, the expected value of Ω becomes equal to σ2, the variance of 
the population which is distributed as N(µ, σ2), Here the Ω is 
 

( )
)(22

.
2

pnn

MAEn

−+−π

π
 

 

MAE is the mean absolute error and defined as
n

e
MAE

i∑
= . Thus, under the null 

hypothesis and when n→∞ 
 

( )
2

2

)(22
lim σ

π

π
=















−+−

∑
∞→ pnn

e
E

i

n
 

 
That means Ω is asymptotically unbiased estimator of σ2.  
 
Proof:  

 
For the proof of above expression, we will use mean deviation. The amount of dispersion in a 
population is measured to some extent by totality of deviations from mean. Mean deviation of 
a population is defined as 
 

∫
∞

∞−

−= dFX µδ  

 
Here, F is the cumulative distribution function and µ is the mean of that population.  



An Asymptoic Test for the Detection of Heteroskedasticity                                                                      
 

 38 

If X~N(0,1) 
 

πππ
δ

22

2

1

0

22

22

=== ∫∫
∞ −−∞

∞−

dxXedxeX

XX

 

 
For X~N(µ, σ2),  
 

( )

π
σµ

πσ
δ σ

µ
2

2

1 2

2

2 =−=

−−∞

∞−

∫ dxeX

X

       (1) 

 
Let d be the sample mean deviation 
 

∑
=

−=
n

i

i XX
n

d
1

1
.  

 
Then for symmetrical populations, approximately 
 

( ) ( )221
δσ −≅

n
dVar  

( ) 







−≅

π

σ 2
1

2

n
dVar      (2) (Stuart and Ord, 1994:361) 

 
In this normal case, the mean and variance of d can be obtained exactly.  
 
Lemma 1:  

 

Let g be a linear function of random variables. If  
 

( ) ∑
=

=
k

i

iik XaXXg
1

1 ...,.........  

 
then,  
 

∑∑
≠

+=
ji

jijiii XXCovaaXVaragVar )()()( 2 .       (3)  

 
Since,  
 

)()( XXEdE i −=  

 

and (Xi - X ) has zero mean and exact variance 
( )
n

n 12 −σ
 by (3), (1) gives 
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( ) ( )
n

n
dE

.

12 2

π

σ −
=    (4)(see Stuart and Ord, 1994:197 and 361 for the proof) 

 
Lemma 2:  

 
If the regression model is given as simple linear model of the form 
 

iii XY εβα ++=  

 
and the sample regression of it as 
 

iii ebXaY ++= ,  

 
for the residual, it is possible to write  
 

( ) ( ) iii Xbae εβα +−+−=  

 
ei differ from εi by a term depending on the estimation error. When n→∞ 
 

α=
∞→

n
n

ap lim   and  β=
∞→

n
n

bp lim  

 
and therefore residuals tend in probability to εi if the assumptions of classical linear regression 
model hold. The empirical distribution of the ei then tends in probability to the probability 
distribution of the εi; and the empirical moments of the ei to the theoretical moments of the εi 
(Malinvaud, 1970:88).  
By using this result and as n→∞, by (4), it is possible to write 
 

( )
n

pn
eE i

.

)(2 2

π

σ −
≅∑          (5) 

 

considering ∑ = 0ie . Here, p is the number of parameters that are estimated in the sample 

regression function. As n→∞, by (2) 
 

( ) 







−≅∑

π

σ 2
1

2

n
eVar i          (6) 

 

From (5) and (6), and by using the relation ( )[ ]22 )()( XEXEXVar i −=  

 

[ ] ( )
π

πσ )(222
2 pnn

eE i

−+−
≅∑  

 
Thus,  
 



An Asymptoic Test for the Detection of Heteroskedasticity                                                                      
 

 40 

( )
2

2

)(22
lim σ

π

π
=










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e
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we reach the Proposition 1.  
 

3.2. Test Statistic 
 
For the test statistic we will use the result of Proposition 1. As it is known 
 

( ) 2

2

σ=










−
=

∑
pn

e
EMSEE

i  

 
We can compare this with the result of Proposition 1 as n converges to infinity. When the 
homoskedasticity assumption holds, the two expression Ω and MSE will approximately have 
the same value, but if εi is not homoskedastic, Ω and MSE will differ from each other. MSE 
becomes greater than Ω. Thus, we can easily construct a test by comparing Ω and MSE.  
An approximate test statistic can be obtained by the way which is similar to the case where 

the equality of σ2 to a specific value ( 2
0σ ) is tested. Here the hypotheses are constructed as 

 

H0 : 
2σ = 2

0σ  or H0 : 
2σ ≤ 2

0σ  

 
against 
 

H1 : 
2σ > 2

0σ  

 

If 
( ) 2

,2
0

2ˆ
αχ

σ

σ
pn

pn
−〉

−
, the null hypothesis is rejected. In our test the specific value ( 2

0σ ) is Ω. 

Therefore, under the null hypothesis which implies homoskedasticity,  
 

( )














−+−

=










−+−

−

∑
∑

)(22)(22
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2

2

22
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e

e

pnn
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i

i

π

π
π

π
  ~

A

 2
pn−χ  

 
We will denote this statistic as A.  
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3.3. Alternative of the Test Statistic 

 
In this section another approach will be used to obtain a different statistic for the test.  
 
 
Proposition 2:  

 

We can test the equality of 2σ to a specific value ( 2
0σ ) by the following proposition:  

We have 
 

( ) 22ˆ σσ =E  and ( )
pn

Var
−

=
4

2 2
ˆ

σ
σ  where 2σ̂ = MSE.  

 
Thus, asymptotically, we can write 
 

 

pn

MSE

−

−
4

2

2σ

σ
 ~

A

 tn-p 

 
 

For 2
0σ , again we have Ω. Therefore, as n→∞,  

 

( )

( )

pn

pnn

e

pnn

e
MSE

i

i

−















−+−

−+−
−

∑

∑

22

2

)(22
2

)(22

π

π

π

π

 ~
A

 tn-p 

 
We will denote this statistic as B. So we obtained two test statistics which have the same 
logic.   
 
 

4. Simulation Experiments 
 
 
In this part, Monte Carlo simulation experiments will be carried out for the two test statistics 
that were deduced in the previous part. Simulation experiments were made in Matlab 7.0. The 
dependent variable will be obtained from the expression  
 

iii XY εβα ++=  
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where εi is drawn from N(0, 1). The Xi is nonstochastic variable with n elements and contains 
successive numbers from 1 to n. In this simulation experiment, α and β are chosen to be as α = 
0.5 and β = 1.  
1000 trials are to be realized for each experiment and the sample size is chosen to be n = 50, n 
= 100, and n = 250.  
Although it was stated before that the test developed here does not depend on any 
heteroskedasticity assumption, in order to measure the power of the two test statistics we have 
to express the structure of the heteroskedasticity. The hypothesis of the test experiment is  
 

H0 : 
22 σσ =i
  against  H1 : 

k

ii X
22 σσ =      (A) 

 
Here, k is a parameter which regulates the intensity of heteroskedasticity. The case of k = 2 is 
depicted in Fig. 1 b and c.  
To see the performance of the test, we will calculate the power of the test. That is namely, 1- 
Type 2 error. The results for statistics A and B for sample sizes 50, 100, and 250 is shown in 
Table 1 for the significance level α = 0.05.  
 
 
 
Sample 
size 

The 
statistic 

A B The intensity 
parameter k 

50 0.238 0.152 2 
50 0.654 0.530 3 
50 0.877 0.798 4 
100 0.635 0.494 2 
100 0.989 0.960 3 
100 1 0.998 4 
250 0.997 0.989 2 
250 1 1 3 
250 1 1 4 
Table 1: The power of test statistics A and B for k = 2, 3 and 4. The sample sizes are taken as 
50, 100 and 250 where α = 0.05 
 
The results show that the power of these two test statistics becomes higher when the sample 
size increases. In fact, the two statistics start to behave well when the sample size is 100 and k 
= 3. After this the two statistics nearly have the same power.  
The same simulation can be made for two- and three-independent variable linear regression 
model. For the two-independent variable model, the parameters are taken as α = 0.5, β1 = 1 
and β2 = 1.5. X1 is again a nonstochastic variable with n elements and contains successive 
numbers from 1 to n. X2 is the second independent variable which contains random numbers 
obtained from uniform distribution varying between 1 to n. For the alternative hypothesis we 
use a generalized form of (A). That is,  
 

H0 : 
22 σσ =i   against  H1 : ∏

=

=
m

i

k

ii X
1

22 σσ  

 
Here, k is again the intensity parameter of heteroskedasticity and m=2.  
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The results for statistics A and B for sample sizes 50, 100, and 250 is shown in Table 2 for the 
significance level α = 0.05.  
 
Sample 
size 

The 
statistic 

A B The intensity 
parameter k 

50 0.825 0.758 2 
50 0.93 0.89 3 
50 0.976 0.954 4 
100 1 1 2 
100 1 1 3 
100 1 1 4 
250 1 1 2 
250 1 1 3 
250 1 1 4 
Table 2: The power of test statistics A and B for the two-independent variable linear model.  
 
The same experiment can be extended to three-independent variable linear model. In this case, 
the parameters are taken as α = 0.5, β1 = 1, β2 = 1.5 and β3 = 2. The same alternative 
hypothesis is used where m=3. The results are shown in Table 3.  
 
Sample 
size 

The 
statistic 

A B The intensity 
parameter k 

50 0.99 0.98 2 
50 0.989 0.979 3 
50 0.994 0.99 4 
100 0.999 0.997 2 
100 1 0.999 3 
100 1 1 4 
250 1 1 2 
250 1 1 3 
250 1 1 4 
Table 3: The power of test statistics A and B for three-independent variable linear model. 
 
As it is seen from these three experiments, the power of A is slightly better than B. The 
intensity parameter and the sample size are positively related with the power.  
 

5. Final Remarks 
 
In this paper an asymptotic test for heteroskedasticity has been presented. As it is known, 
there exists a considerable amount of tests in the literature. The advantage of the test here 
deduced is that it does not require an estimation of an auxiliary regression or assume any 
structure of heteroskedasticity.  The power of the two statistics depends on the intensity of the 
heteroskedasticity as it can be seen from the results. The performance of the two alternative 
statistics becomes well as the sample size increases.  
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