ÖZET

Bu çalışmaya 24 erkek sedanet üniversite öğrencisi ve çalışanlı katıldı. Denekler aerobik ve anaerobik olmak üzere ondu ikisi kılık iki gruba ayrıldı.

Her ikisi grubunda fizik münüyene, ıstirahat EKG’si, solunum fonksiyon testleri ve breath by breath yöntemiyle metabolik tam konsiyon testleri yapıldı. Anaerobik eşik değerleri kalp hızını 30 dk, anaerobik eşik, eşik üstünde kalp hızını ve Max. VO₂’nin %50’inde 20 dk. Monark ergometri biskületlerde egzersiz tabii tutuldu. Egzersizler esnasında kalp hızları Polar Tester bahz takip cihazi ile takip edildi.

Her ikisi gruptanda egzersiz öncesi (E₀), egzersiz sonrası 1.dk. (E₀₁.₀Dk) ve egzersiz sonrası 45.dk. (E₀₄₅.₀Dk) tarihçe venöz kan örnekleri alınması (E₀.₀Dk) ve vücut Hct (%) ve eritrosit (%), lükosit (%), kloktus (x10^12/mm³), kloktus formülü (% nötrofil, % lenfosit, % monosit, % eosinofil, % bazofil) ve trombosit (x10^9/mm³) ciddi değişikliklerle tesbit edildi.

Flow Cytometry yöntemiyle monoklonal antikorlarla CD₃, CD₄, CD₈, CD₁₀ ve CD₅₈ tayinleri yapıldı. E₀.₀Dk, E₀₁.₀Dk, E₀₄₅.₀Dk ve günde kalp hızı olan kan örneklerinde egzersizin akut etkisine bakıldı.

Egzersizin lükosit sayısı, lükosit alt grupları ve lenfosit alt grupları üzerine etkisine bakıldığında; akut egzersizin, aerobik grupta E₀’ne göre E₀₁.₀Dk nötrofillerden de artışı anlamlı (p<0.05), lenfositlerden de artış anlamaz bulunurken, E₀₄₅.₀Dk da nötrofil ve lenfosit değerlerindeki azalma anlamlı (p<0.05) olarak bulunmuştur. Anaerobik grupta E₀’ne göre E₀₁.₀Dk’da artışlarlar (kloktus (x10^12/mm³), lenfosit (x10^9/mm³), nötrofil (x10^9/mm³), monosit (x10^9/mm³) ve E₀’ne göre E₀₄₅.₀Dk’da azalmalar (kloktus, lenfosit, eosinofil, monosit, %7, p<0.05)) anlamlı bulunmuştur.

Lenfosit alt gruplarında aerobik grupta E₀’ne göre E₀₁.₀Dk’da CD₃, CD₄, CD₈, CD₁₀’da azalma görülürken, CD₅₈ da (%35, p<0.01) artış tespit edilmiştir. Anaerobik grupta E₀’ne göre E₀₁.₀Dk’da CD₃, CD₄, CD₈, CD₁₀’da azalma görülürken, CD₅₈ da (%77, p<0.01) artış tespit edilmiştir. CD₃/CD₈ oranları E₀₁.₀Dk’da aerobik grupta artışa, anaerobik grupta tersine dönümsürınt.

Çalışmanın öncesi ve aniden analizleri Manova testi ile yapılmıştır.

Anahtar kelimeler: Aerobik egzersiz, anaerobik egzersiz, lenfosit alt grupları.

SUMMARY

The effect of aerobic and anaerobic acute exercise on the immune parameters. Exercise is the highest stress on the body. The body responds to stress by several physiological changes on metabolic, hormonal and immunological systems. In this study immunological responses to acute aerobic and anaerobic exercises were examined.

24 sedentary male university staff and student were chosen for this study. Volunteers were separated into two groups as aerobic and anaerobic.

Physical examinations, resting EKG’s, pulmonary function tests, metabolic conditions tests by breath by breath method with Bruce protocol were done both two groups. After their anaerobic thresholds were determined, Monark cycle ergometer exercise were carried through, under threshold level of heart rate for aerobic group (Max VO₂ %50, 30 min.) and above threshold level of heart rate for anaerobic group (Max VO₂ %75, 20 min.). During the exercise heart rates of volunteers were controlled by Polar Tester.

Peripheral venous blood samples were taken before exercise (E₀), after 1 min. of exercise (E₁₋₅.min.) and after 45 min. of exercise (E₅₋₅.min.) from both two groups. Hb (gr), Hct (%) erythrocyte...
(×10³/mm³), leucocyte (× 10⁴/mm³) and % neutrophile, % lymphocyte, % monocyte, % eozinophile, % basophile and trombocyte (× 10¹/mm³) values were determined by Technican H-2 System.

CD3, CD4, CD8, CD19 and CD56 levels were found by flow Cytometry. The acute effect of exercise were investigated in the blood samples.

The effect of exercise to number of leucocyte, subsets group of leucocyte and lymphocyte were investigated. The acute exercise in aerobic group; increase of neutrophiles between (E₈) and (E₈₅ₘᵢₙ) were significant (p < 0.05) but increase of lymphocytes were nonsignificant. The decrease of neutrophile and lymphocyte values were found significant (p < 0.05). Anaerobic group show significant increases between E₈ and E₈₅ₘᵢₙ in the value of leucocyte (%70, p<0.001), lymphocyte (%88, p<0.001), neutrophile (%60, p<0.01), monocyte (%73, p<0.01) and significant decreases between E₈ and E₈₅ₘᵢₙ, leucocyte, lymphocyte (%22, p<0.01), monocyte (%7, p<0.05).

The subsets of lymphocyte that CD3⁺, CD4⁺, CD8⁺, CD19⁺ counts decreased in aerobic group in E₈ according to E₈₅ₘᵢₙ, CD56⁺(≥35, p<0.01) increased. CD3⁺, CD4⁺, CD8⁺, CD19⁺ values in anaerobic group decreased in E₈ according to E₈₅ₘᵢₙ but CD56⁺(≥77, p<0.001) increased. There was no changes in the ratio of CD4⁺/CD8⁺ in aerobic group at E₈₅ₘᵢₙ and the ratio changes inversely in anaerobic group.

Statistical analysis were done by Manova Test.

Key words: Aerobic exercise, Anaerobic exercise, Lymphocyte subsets

GİRİŞ

Son birkaç yılda immun sistem ve fiziksel egzersizler üzerine birçok çalışma yayınlanmıştır (7.9.16.19.30). Yoğun egzersizin de bir stres olduğu göz önüne alınrsa (7.9.30), egzersize karşı gösterilen immunolojik tepkilerin, termal ya da travmatik yaralanmalarda, operasyonlarda (19,20) ve akut miyokart infartsusunun görülen reaksiyonlardan farklı olmayaçağı açıklıktır.

Egzersiz sırasında, egzersizin yoğunluğuna bağlı olmak üzere kana çeşitli düzeylerde stres hormonları salgılanır (1,2,9,19,22). Bu hormonlar kandaki lökosit ve lenfosit alt grupları üzerinde oldukça etkili olmaktadır. Orta yoğunlukta (Max.VO₂nin %50’sinde) bir egzersizden sonra görülmemekle birlikte, şiddetti yoğunlukta (Max.VO₂nin %75-80’inde) bir egzersizden sonra nötrofili, lenfositoz ve monositoz görülmektedir (19). Lenfosit alt grupları incelendikinde T-helper ve B lenfositlerinin saylarının artmasına rağmen ülülerinin fazla değişimmedi, hatta düştüğü, Tşiftoxik.Supresor ve NK (Natural Killer) hücrelerinde ise hem sayıca hemde yüzde olarak oldukça arttığı göstermiştir (15,16,19).

İmmün sistemin çeşitli komponentlerine egzersizin nasıl etki ettiği bilmek kadar, egzersizin hangi noktalarında klinik olarak bireye yararı ya da zararlı olduğunu bilmek de önemlidir. Çalışmalara egerize yönlendirmenin egzersizin tipinin belirlenmesi oldukça önem kazanmış ve bu arastırılarda aerobic ve anaerobik egzersizlerin bağımsızı sistem parametrelerinden olan lökosit ve lenfosit alt grupları (CD3, CD4, CD8, CD19, ve CD56) üzerindeki etkilerini objektif olarak belirlemek için planlanmıştır.

MATERIAL ve METOD

Çalışmamızda 24 erkek sedanter üniversite öğrencisi ve öğrencisi katıldı. Denekler onikişer kişilik iki gruba ayrıldı. Deneklerin artışları 1/100 gr hassasiyette TESS Model EB-150 Marka baskılle kg cinsinden ölçülü. Boy uzunluklarını cm cinsinden verildi.

Fizik muayene, EKG tetkiki (Kardiosis) ve solunum fonksiyon testinin (Sensor Medics 2400 spirometre cihazı) ardından deneklere "Bruce" protokolü ile efor testi (Stress test - Kardiyolojik yükleme) uygulandı.

Efor testi esnasında 2900 C Sensor Medics metabolik gaz ölçer ile "Breath by Breath" yöntemi ile ekspirasyon havasından metabolik ölçüm yapıldı.
Egzersiz Gruplarının Ayrımı:
Deneklerin anaerobik eşik değerleri kalp hızları test edildiken sonra;
1.Grup (Aerobik Grup); eşik altı kalp hızında, Max VO2'nin %50'sinde 30 dk
2.Grup (Anaerobik Grup); eşik üstü kalp hızında, Max VO2'nin %75'inde 20 dk, Monark 814-E ve 818 model ergometrik bisikletlerde egzersize tabii tutuldular. Her iki gruba da "Polar Tester" nabız takip cihazı ile nabız takipleri yapıldı.

Her iki gruba da; aerobik gruba 30 dk. Max. VO2'nin %50'sinde, anaerobik gruba 20 dk. Max. VO2'nin %75'sinde bisiklet egzersizi yaptılar, egzersiz öncesi (E0), egzersiz sonrası 1.dk.(Eson.1.DK.), ve egzersiz sonrası 45.dk.(Eson.45.DK.)’larda oksalati tüplere önkol venlerinden 2’şer cc venöz kan alarak Technican H-2 System cihazı ile Hb (gr), Hct (%), eritrosit (x10⁴/mm³), lökosit (x10⁹/mm³), lökosit formülü (% nötrofil, %lenfosit, % monosit, % eosinofil, % bazofil) ve trombosit (x10⁹/mm³) değerleri test edildi.

E0, Eson.1.DK ve Eson.45.DK,lardan heparinli enjektörlere önkol venlerinden 10’ar cc venöz kan almak için Flow Cytometry yöntemyle Coulter Epics Profile-II aletinde total T lenfosit (CD4), TH (CD4), T₈₉₃₋₅₋₅, (CD8), total B lenfosit (CD19) ve NK (CD56) tayini yapıldı.

Çalışmamızın istatistiksel analizleri Manova Testi ile yapılmıştır. Tablolarda aritmatik ortalamalar ve standart deviasyonlar verilmiştir, p<0.05 anlamlı olarak kabul edilmiştir.

BULGULAR

Tablo 1. Antropometrik ölçümler

<table>
<thead>
<tr>
<th></th>
<th>YAŞ</th>
<th>BOY (cm)</th>
<th>KİLO (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEROBİK GRUP</td>
<td>25.67 ± 3.79</td>
<td>174.83 ± 5.15</td>
<td>72.17 ± 8.05</td>
</tr>
<tr>
<td>ANAEROBİK GRUP</td>
<td>20.83 ± 2.89</td>
<td>175.33 ± 6.68</td>
<td>70.67 ± 6.15</td>
</tr>
</tbody>
</table>

Tablo 2. Aerobik grupda kan değerleri

<table>
<thead>
<tr>
<th>N: 12</th>
<th>EGZERSIZ ÖNÇESİ</th>
<th>EGZERSIZ SON.1.DK.</th>
<th>EGZERSIZ SON 45.DK.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb (gr.)</td>
<td>14.95 ± 0.77</td>
<td>15.50 ± 0.74**</td>
<td>14.79 ± 0.74**</td>
</tr>
<tr>
<td>Hct (%)</td>
<td>44.56 ± 3.41</td>
<td>45.94 ± 3.81**</td>
<td>44.07 ± 3.63**</td>
</tr>
<tr>
<td>ERITROŞİT x 10⁶</td>
<td>5.16 ± 0.49</td>
<td>5.32 ± 0.55**</td>
<td>5.11 ± 0.50**</td>
</tr>
<tr>
<td>LÖKOSİT x 10⁹</td>
<td>5.13 ± 0.85</td>
<td>5.56 ± 1.25</td>
<td>4.69 ± 0.82**</td>
</tr>
<tr>
<td>TROMBOSİT x 10³</td>
<td>194.09 ± 45.74</td>
<td>196.02 ± 45.20</td>
<td>195.01 ± 42.49</td>
</tr>
</tbody>
</table>

Tablo 3. Anaerobik grupda kan değerleri

<table>
<thead>
<tr>
<th>N: 12</th>
<th>EGZERSIZ ÖNÇESİ</th>
<th>EGZERSIZ SON.1.DK.</th>
<th>EGZERSIZ SON 45.DK.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb (gr.)</td>
<td>15.17 ± 0.96</td>
<td>16.78 ± 1.33**</td>
<td>15.03 ± 0.88**</td>
</tr>
<tr>
<td>Hct (%)</td>
<td>43.83 ± 3.15</td>
<td>48.74 ± 4.25**</td>
<td>43.40 ± 2.93**</td>
</tr>
<tr>
<td>ERITROŞİT x 10⁶</td>
<td>5.24 ± 0.47</td>
<td>5.78 ± 0.61**</td>
<td>5.22 ± 0.46**</td>
</tr>
<tr>
<td>LÖKOSİT x 10⁹</td>
<td>5.02 ± 1.25</td>
<td>8.56 ± 2.97***</td>
<td>5.16 ± 2.14***</td>
</tr>
<tr>
<td>TROMBOSİT x 10³</td>
<td>198.64 ± 44.02</td>
<td>220.02 ± 46.25**</td>
<td>200.64 ± 46.87**</td>
</tr>
</tbody>
</table>

Tablo 4. Aerobik grupda lökosit alt grup yüzdeleri

<table>
<thead>
<tr>
<th>N: 12</th>
<th>EGZERSIZ ÖNÇESİ</th>
<th>EGZERSIZ SON.1.DK.</th>
<th>EGZERSIZ SON 45.DK.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NÖTROFİL (%)</td>
<td>56.79 ± 10.53</td>
<td>55.77 ± 8.01</td>
<td>•58.08 ± 9.33 •</td>
</tr>
<tr>
<td>LENFOSİT (%)</td>
<td>33.59 ± 7.11</td>
<td>32.85 ± 5.99</td>
<td>•31.13 ± 7.92 •</td>
</tr>
<tr>
<td>MONOSİT (%)</td>
<td>5.39 ± 0.81</td>
<td>5.68 ± 0.75</td>
<td>5.22 ± 0.41 •</td>
</tr>
<tr>
<td>BOZİNOFİL (%)</td>
<td>2.34 ± 1.12</td>
<td>2.26 ± 1.32</td>
<td>2.15 ± 1.06</td>
</tr>
<tr>
<td>BAZOFİL (%)</td>
<td>0.78 ± 0.36</td>
<td>0.68 ± 0.38</td>
<td>0.67 ± 0.29</td>
</tr>
</tbody>
</table>

^{• p<0.05 - Anlamlı, • • • p<0.01 - İleri derecede anlamlı, • E0 ile E₄₅ DK'nın istatistiksel anlamlılığını belirtmek için, • • E₀ ile E₄₅ DK'nın istatistiksel anlamlılığını belirtmek için kullanılmıştır.}
Tablo 5. Aerobik grupda lükosit sayılan (mm\(^3\))

<table>
<thead>
<tr>
<th>N: 12</th>
<th>EGZERSİZ ÖNÇESİ</th>
<th>EGZERSİZ SON.1.DK.</th>
<th>EGZERSİZ SON 45.DK.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NÖTROFİL x10(^3)</td>
<td>3.22 ± 1.57</td>
<td>3.52 ± 1.74*</td>
<td>3.19 ± 1.81</td>
</tr>
<tr>
<td>LENFOSIT x10(^3)</td>
<td>1.88 ± 0.56</td>
<td>1.94 ± 0.48</td>
<td>1.57 ± 0.49</td>
</tr>
<tr>
<td>MONOSIT x10(^3)</td>
<td>0.30 ± 0.01</td>
<td>0.34 ± 0.12</td>
<td>0.27 ± 0.09*</td>
</tr>
<tr>
<td>EÖZİNOFİL x10(^3)</td>
<td>0.13 ± 0.06</td>
<td>0.14 ± 0.07</td>
<td>0.12 ± 0.08</td>
</tr>
<tr>
<td>BAZOFİL x10(^3)</td>
<td>0.04 ± 0.02</td>
<td>0.04 ± 0.02</td>
<td>0.05 ± 0.02</td>
</tr>
</tbody>
</table>

Tablo 6. Anaerobik grupda lükosit sayılan

<table>
<thead>
<tr>
<th>N: 12</th>
<th>EGZERSİZ ÖNÇESİ</th>
<th>EGZERSİZ SON.1.DK.</th>
<th>EGZERSİZ SON 45.DK.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NÖTROFİL (%)</td>
<td>58.87 ± 10.12</td>
<td>55.28 ± 12.02*</td>
<td>65.63 ± 11.01 **</td>
</tr>
<tr>
<td>LENFOSIT (%)</td>
<td>29.64 ± 9.07</td>
<td>33.24 ± 10.36**</td>
<td>24.20 ± 8.98 **</td>
</tr>
<tr>
<td>MONOSIT (%)</td>
<td>6.20 ± 1.60</td>
<td>6.18 ± 1.64</td>
<td>5.99 ± 1.82</td>
</tr>
<tr>
<td>EÖZİNOFİL (%)</td>
<td>2.78 ± 1.39</td>
<td>2.28 ± 1.12*</td>
<td>2.02 ± 1.29</td>
</tr>
<tr>
<td>BAZOFİL (%)</td>
<td>0.50 ± 0.24</td>
<td>0.63 ± 0.40</td>
<td>0.45 ± 0.27</td>
</tr>
</tbody>
</table>

Tablo 7. Anaerobik grup lükosit alt grup değerleri

<table>
<thead>
<tr>
<th>N: 12</th>
<th>EGZERSİZ ÖNÇESİ</th>
<th>EGZERSİZ SON.1.DK.</th>
<th>EGZERSİZ SON 45.DK.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NÖTROFİL x10(^3)</td>
<td>3.03 ± 1.15</td>
<td>4.91 ± 2.65***</td>
<td>3.54 ± 2.14*</td>
</tr>
<tr>
<td>LENFOSIT x10(^3)</td>
<td>1.43 ± 0.38</td>
<td>2.69 ± 0.83***</td>
<td>1.12 ± 0.32*</td>
</tr>
<tr>
<td>MONOSIT x10(^3)</td>
<td>0.30 ± 0.07</td>
<td>0.52 ± 0.18***</td>
<td>0.28 ± 0.06 **</td>
</tr>
<tr>
<td>EÖZİNOFİL x10(^3)</td>
<td>0.14 ± 0.08</td>
<td>0.19 ± 0.09*</td>
<td>0.09 ± 0.05</td>
</tr>
<tr>
<td>BAZOFİL x10(^3)</td>
<td>0.02 ± 0.09</td>
<td>0.03 ± 0.03*</td>
<td>0.04 ± 0.05</td>
</tr>
</tbody>
</table>

TARTIŞMA VE SONUÇ

Çok sayıda bilimsel araştırma yüksek temporda orta süre yapılan kardiyorespiratuar egzersizlerin dolasımdaki lükosit sayısında %50-100 artış yoldaşığı göstermişdir (16,19). Artışta büyük pay lenfosit ve nötrofillerin olmakla birlikte monosit artışa da yüzdeydi etkilemektedir. Bazofil ve eozinofil säyılarda da egzersize bağlı artışlar olmasına rağmen, bizim çalışmamızda istatistiksel anlamlılık gösterilemediği için tartışmamızda bu iki parametre üzerinde durmayacağız. Egzersizin bitiminden sonraARI 30 dk. içinde bu artışlar tekrar başlangıç düzeyine dönümlüyor, 40-45. dk.'da da %30-50'lik azalma görülmektedir. Bu azalmanın daha çok lenfopeniden kaynaklandığı belirtilmiştir (5,6,18,22).

Tartışmamız içerisinde kullanılan lükositot, lenfositoz, nötrofilli ve monositoz gibi terimler bu hücrelerin sayılardaki artışları, lükopeni, lenfopeni, nötropeni ve monositopeni bu hücrelerin saylarının başlangıç düzeyine göre azaldığını göstermektedir.

Bizim çalışmadımızda aerobik ve anaerobik gruplarda egzersiz öncesi başlangıcın parametreleri bakımından bir uyumluluk söz konusu idi.

Aerobik gruptan E\(_0\), E\(_{SON.1.DK}\) ve E\(_{SON.45.DK}\)'da venoz kan örnekleri alındığında; E\(_{SON.1.DK}\)'da total lükosit sayısında %8 artış olduğu, bu artışın nötrofillerden (%9) ve lenfositlerden (%4) kaynaklandığını tespit ettik. Nötrofillerdeki artış istatistiksel olarak anlamlı (p<0.05) bulunurken lenfositlerdeki artış anlamılır değildir. E\(_{SON.45.DK}\)'da alınan kan örneklerinde lükopeni görüldü (%9). Lükopeninin nötropeni (%4, p<0.05) ve lenfopeni'den (%16, p<0.01) kaynaklandığını tesbit ettik (tablo 2, 4, 5).
Tablo 8. Aerobik grup lenfositoz alt grupları

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N: 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD 3(%)</td>
<td>74.79 ± 10.25</td>
<td>72.10 ± 9.09</td>
<td>77.96 ± 7.81</td>
</tr>
<tr>
<td>CD 4(%)</td>
<td>46.20 ± 9.42</td>
<td>41.37 ± 10.61</td>
<td>44.77 ± 5.14</td>
</tr>
<tr>
<td>CD 8(%)</td>
<td>29.45 ± 6.26</td>
<td>29.29 ± 6.94</td>
<td>29.63 ± 6.89</td>
</tr>
<tr>
<td>CD 19(%)</td>
<td>10.49 ± 6.12</td>
<td>8.23 ± 3.97*</td>
<td>9.16 ± 5.76</td>
</tr>
<tr>
<td>CD 56(%)</td>
<td>14.71 ± 5.58</td>
<td>19.90 ± 8.54**</td>
<td>12.87 ± 3.96***</td>
</tr>
<tr>
<td>CD 4 / CD 8</td>
<td>1.49</td>
<td>1.41</td>
<td>1.51</td>
</tr>
</tbody>
</table>

Tablo 9. Aerobik grup lenfositoz alt grupları

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N: 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD 3(%)</td>
<td>77.00 ± 6.28</td>
<td>68.01 ± 11.55**</td>
<td>79.02 ± 9.15**</td>
</tr>
<tr>
<td>CD 4(%)</td>
<td>45.12 ± 4.86</td>
<td>32.37 ± 9.25**</td>
<td>46.88 ± 6.24**</td>
</tr>
<tr>
<td>CD 8(%)</td>
<td>31.14 ± 6.18</td>
<td>35.27 ± 9.25</td>
<td>31.63 ± 9.96</td>
</tr>
<tr>
<td>CD 19(%)</td>
<td>9.20 ± 2.47</td>
<td>7.81 ± 2.78</td>
<td>9.67 ± 2.44</td>
</tr>
<tr>
<td>CD 56(%)</td>
<td>13.69 ± 4.66</td>
<td>24.26 ± 9.95***</td>
<td>12.17 ± 5.46***</td>
</tr>
<tr>
<td>CD 4 / CD 8</td>
<td>1.45</td>
<td>0.91</td>
<td>1.48</td>
</tr>
</tbody>
</table>

* ** p<0.05 - Anlamlı, ** ** ** p<0.01 - Ileri derecede anlamlı, *** **** p<0.01 - Çok ileri derecede anlamlı, * Es ile Es.1.d.k.'nin istatistiksel anlamlığı belirtilmek için, ** Es.1.d.k ile Es.45.d.k.'nin istatistiksel anlamlığı belirtilmek için, *** Es ile Es.45.d.k.'nin istatistiksel anlamlığı belirtilmek için kullanılmıştır.

Anaerobik grupta Es.1.d.k.'da alın kan örneklerinde Es olarak göre total lókosit sayısında ileri derecede (%70, p<0.01) artış tespit edildi. Lókosit formüllüne bakıldığında bu artış nötrofili (%60, p<0.01), lenfositoz (%88, p<0.01) ve monositozdan (%73, p<0.01) kaynaklandığı görüldü. Es.45.d.k.'da alın kan örneklerinde lókosit miktarı başlangıç seviyesine dönerken, nötrofiliin devam ettiği (%16, p<0.05), fakat lókosit (%22, p<0.01) ve monositlerin (%7, p<0.05) başlangıç seviyesinin altında düştüğü gösterildi (tablo: 3, 6, 7).

Bu bulgular literatür bulgularıyla karşılaştırıldığında bir paralellik göstermektedir.

Lókosit alt grup sayılardaki değişikliklerin çıkış zamanları ve süreleri, egzersizin yol açtığı epinefrin ve kortizol konsantrasyonundaki değişimlerle ilişkilidir. Epinefrin ve kortizol konsantrasyonları egzersiz temposunun Max. VO2' nin %60'ının üzerinde çıkmasıyla arıtmaya başlamakta ve egzersiz şiddetinin en üst noktası erişmesi ile pik yapmaktadır. Egzersizin bitiminden hemen sonra epinefrin konsantrasyonu E0 seviyesine düşmekte, oysa kortizol seviyesi 2 saat veya daha fazla yüksek kalabilmektedir. Serumdaki yüksek kortizol seviyesi etkili ve uzun süreli nötrofiliye neden olmaktadır. Bunun yanı sıra yüksek kortizol düzeyi lenfositlerin doaşımına katılması engellediği gibi lenfositlerin kandan diğer körpüdanlara geçişini de kolaylaştırılmaktadır. Diğer bir deyişle hızlı tempolu sporda epinefrin artışına bağlı olarak lókosit sayısında geçici bir artış olmaktadır. Egzersizin bitiminde ise uzun süreli kortizol duruma hakim olmakta, lenfopeni ve nötrofili görülmektedir (1,2,4,10,14,16,19,24,28,30).

Egzersiz stresinin diğer streslerdeki (trafik kazası, kalp krizi vs.) kortizol ve katekolamin deşarjından farklı beraberinde endojen opioidlerden olanendorfin salınımına da neden olmasıdır. Bu velele kışı egzersizden sonra kendini iyi hisseder.

Hümor ve hücresel bağırsakta rol oynamayan lókosit alt gruplarından ilk üçü içinde (T, B, NK hücreleri), egzersize en duyarlı olanı NK hücreleridir. Nieman ve arkadaşlarının yaptıkları çalışmaya göre hızlı tempolu egzersizden hemen sonra NK hücreleri %150-300 oranında artar ve ortaya çıkan lenfositozdan sorumlu olur. TSTT, SUP. hücrelerde dikkate değer biçimde (%50-100) ar-
tar, oysa ThELP,IND, ve B hücreleri öncekilere kıyasla durumdun etkilenmemiş görünürler (13,17,19,27,20,33,34).

Birim araştırmamızda akut aerobik grup lenfosit alt grupları yüzeyleri ESON,1,2,3,4'de Eo'ne göre CD3 (%4), CD4 (%11), CD8 (%1) ve CD19 (%22)'da azalma görülmektedir. CD3 (%35)'de artış tespit edilmiştir. CD8'deki azalma ve özellikle CD56'daki artış iyi düzeylerini istatistiksel olarak ileri derecede anlamlı bulundu (p<0,01). ESON,4,5,6,7,8'de alınan kan örneklerinde CD3 (%4) ve CD8 (%0,5) artarken, CD4 (%4), CD19 (%13) ve CD56 (%13) değerlerinde azalma görüldü (tabl: 8).

Lenfosit alt grupları mm²'deki sayıları verildiğiinde CD3, CD8, ve CD56'da artış, CD4 ve CD19'da azalma görüldü, CD19 (%20)'da azalma ve CD56 (%37)'deki artış istatistiksel olarak ileri derecede anlamlı bulundu. ESON,4,5,6,7,8'daki kan örneklerinde CD1 (%12), CD4 (%19), CD8 (%17), CD19 (%30) ve CD56 (%25)'de azalma ve CD56 (%77)'de artış tespit edildi. CD3, CD4, CD8, ve CD19'daki değişiklikler anlamılı (p<0,05) ve CD56'da alınan CD19 (%22) ile CD19 (%5)'de artış tespit edilmiştir, CD56'da artış tespit edilen, CD56 ve CD19'da alınan CD19 (%11)'de azalma görüldü (tabl: 9).

CD4/CD8 oranları Eo'de 1,49 iken ESON,1,2,3,4'de 1,41, ESON,5,6,7,8'de 1,51 olarak bulundu, istatistiksel anlamalı bir artış göstermedi (tabl: 8).

Anaerobik grubumuzda lenfosit alt grup yüzeyleri ESON,1,2,3,4'de Eo'ne göre CD3 (%12), CD4 (%29), CD8 (%13) ve CD19 (%16) değerlerinde azalma ve CD56 (%77) değerlerinde artış tespit edildi. CD3, CD4, CD8, ve CD19'daki değişiklikler anlamılı (p<0,05) ve CD56'da artış tespit edildi. ESON,4,5,6,7,8'daki kan örneklerinde CD3 (%2,5), CD4 (%4), CD8 (%1,5) ve CD19 (%5) değerlerinde CD56 ve CD19'da artış tespit edildi. CD56 ve CD19'da alınan CD19 (%11)'de azalma görüldü (tabl: 9).

CD4/CD8 oranları tersine dönüştür. Eo'de 1,45 iken ESON,1,2,3,4'de 0,91'e düşmüştür (p<0,01), ESON,4,5,6,7,8'de 1,48 olarak bulunmuştur (tabl: 9).

Lenfosit alt grupları mm²'deki sayıları verildiğinde CD3 (%66, p<0,01), CD4 (%35, p<0,01), CD8 (%113, p<0,001), CD19 (%59, p<0,01) ve CD56 (%231, p<0,001)'da artış tespit edildi. 45 dk. dinlenmeden sonra alınan venöz kanda tüm CD değerleri başlangıç seviyesinin altında düştü (CD3 (%20, p<0,05), CD4 (%19, p<0,05), CD8 (%22, p<0,05), CD19 (%19, p<0,05) ve CD56 (%31, p<0,01)).

Çeşitli literatür bilgilere çıkan sonuçlarla elde edilen sonuçlar tabloda (tabl: 10) gösterilmiştir. Kişilerin başlangıç kondisyon düzeylerinde, lükositler üzerinde etkiliyor (1,2,11,31,34).

<table>
<thead>
<tr>
<th>Tablo 10. Elit ve Sedanterlerde Egzersiz Yoğunluğuna Göre Lükosit ve Lenfosit Düzeyleleri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elit</td>
</tr>
<tr>
<td>İstirahat</td>
</tr>
<tr>
<td>Submaksimal</td>
</tr>
<tr>
<td>Maksimal</td>
</tr>
</tbody>
</table>

Burada antrenmanlı ve antrenmansız kişilerle maksimal ve submaksimal egzersizlerdeki lükosit değişikleri plazma katekolamin miktarıyla direkt orantılıdır. Antrenmanlı bir insanda submaksimal egzersiz esnasında
semptik deşarj görülmemekte, bu da lökosit ve lenfosit sayılarında anlamla artış olmasını engellemektedir. Sedanterlerde submaksimal egzersizler bile semptik deşarj neden olup, katekolamin seviyesini azartır; bu, kişilerde submaksimal egzersizlerde de lökosit ve lenfositlerin görülmesidir (1,2,11,31,34).

Literatür araştırmaları antrenman yapmayanlarda ve şiddetli antrenman yapanlarda sıkılık alınıp üst olumun yolu infeksiyona riskini, denizli ve orta yoğunlukta antrenman yapanlara göre daha fazla görül diligğini belirtmiştir. 2 saat geçer aerobik egzersizlerin ve tüketici tarzda yapılan anaerobik egzersizlerin kan kortizol düzeyini artırarak lökositler ve lenfositler üzerinde baskılayıcı etki gösterdiği, bunun da immün sistem suprese ettiği belirtilmiştir (Çeşitli hormon infüzyon çalışmaları serumdaki kortizol konsantrasyonu artışının etkili ve uzun süreli lenfopeniye neden olduğunu göstermiştir).

Egzersiz stresi diğer streslerden farklı olarak beraberinde endojen opioyilerden olan endorfın salınımına da neden olur. Bu vesileyle kişi egzersizden sonra kendini daha iyi hisseder.

Özellikle aerobik yapılan egzersizlerin vücud yağ oranında azalmaya neden olduğu, rejim için hazırlanan diet programları ile birlikteNut a bir aerobik egzersiz programı da önerilmesi vurgulanmalıdır.

Bu çalışmaların sonucunda denebilir ki daha sağlıklı ve zinde bir vücudu için orta yoğunlukta aerobik egzersizler (hızlı ve tempolu yürüş, hafif tempoda koşu, düşük hızlarda bisiklet egzersizleri, yarışmaya yönelik olmayan yüzme gibi) (30-60 dk.) ve kısa süreli (15-20 dk.) anaerobik egzersizler (yüksek hızlarda bisiklet egzersiz, tempolu yüzme gibi) yaşamın bir parçası haline getirilmeli, sürekli ve düzenli yapılmalıdır.

KAYNAKLAR

