Araştırma Makalesi
BibTex RIS Kaynak Göster

DA-DA Dönüştürücü Devreleri için Çeşitli İndüktör Nüve Şekillerinin Elektromanyetik ve Mekanik Etkileri Üzerine Karşılaştırmalı Bir Benzetim

Yıl 2019, Cilt: 7 Sayı: 3, 1130 - 1139, 31.07.2019
https://doi.org/10.29130/dubited.505554

Öz


Kaynakça

  • [1] H.C. Sartori, J.E. Baggio, and J.R. Pinheiro, “A Comparative Design of an Optmized Boost Inductor Taking Into Account Three Magnetic Materials Technologies: Volume, Cost and Efficiency Analysis”, 10th IEEE/IAS International Conference on Industry Applications (INDUSCON), Fortaleza, Brazil, 2012.
  • [2] Y. Dhahri, S. Ghedira, and R. Zrafi, “The geometrical structure effect of the integrated power inductor for DC-DC converter”, IEEE International Conference on Control, Automation and Diagnosis (ICCAD), Hammamet, Tunisia, 2017, pp.120-124.
  • [3] R. Jensen, and C. R. Sullivan, “Optimal Core Dimensional Ratios for Minimizing Winding Loss in High-Frequency Gapped-Inductor Windings”, IEEE Applied Power Electronics Conference, , 2003, pp.1164–1169.
  • [4] M.S. Rylko, K.J. Hartnett, J.G. Hayes, and M.G. Egan, “Magnetic Material Selection for High Power High Frequency Inductors in DC-DC Converters”, IEEE Twenty-Fourth Annual Applied Power Electronics Conference and Exposition, (APEC), Washington DC, 15-19 Feb. 2009, pp.2043–2049.
  • [5] E. Agheb and H.K. Høidalen, “Modification of empirical core loss calculation methods including flux distribution”, IET Electr. Power Appl., Vol. 7, Issue. 5, pp.381–390, 2013.
  • [6] S. Balci, M.B. Bayram, N. Altin, and I. Sefa, “Inductance and Loss Behaviors of Medium Frequency High Power Gapped Core Inductors”, 5th International Conference on Advanced Technology&Sciences (ICAT), Istanbul, 9-12 May 2017.
  • [7] I. Sefa, N. Altin, S. Ozdemir, S. Balci, M.B. Bayram, and H. Kelebek, “Design and Loss Analysis of LCL Filter Inductors for Two-Level and Three-Level Inverters”, IEEE 22nd International Conference on Applied Electronics, Pilsen, Czech Republic, 5-6 Sept. 2017.
  • [8] I. Sefa, S. Balci, N. Altin, and S. Ozdemir, “Comprehensive analysis of inductors for an interleaved buck converter”, IEEE 15th International Power Electronics and Motion Control Conference (EPE/PEMC), Novi Sad, , 4-6 Sept. 2012, pp-DS2b.5-1 - DS2b.5-7.
  • [9] M.K. Kazimierczuk, “High-frequency magnetic components”, Second Edition, Wiley, Ohio, USA, Chapter 10, 2014, pp.605-607.
  • [10] C.W. T. McLyman, and A.P. Wagner, “Designing high frequency AC inductors using ferrite and molypermalloy powder cores (MPP)”, IEEE Power Electronics Specialists Conference (ESA SP-230), 24-28 June 1985.
  • [11] Magnetics. (2018, 31 December). Powder Core Material KoolMu26u datasheet. [Online]. Access: https://www.mag-inc.com/Media/Magnetics/Datasheets/0078074A7.pdf
  • [12] Ferroxcube. (2018, 31 December). Powder Core Material Pot Core 6656 datasheet, [Online]. Access: www.ferroxcube.com/FerroxcubeCorporateReception

A Comparative Simulations on the Electromagnetic and Mechanical Effects of the Various Inductor Core Forms for DC-DC Converter Circuits

Yıl 2019, Cilt: 7 Sayı: 3, 1130 - 1139, 31.07.2019
https://doi.org/10.29130/dubited.505554

Öz

DC-DC power electronics
converters are used in many applications such as electrical vehicles, energy
storage systems, renewable energy sources. The inductors designed for a
specific frequency and current level have significant impact on converter
performance. In this study, an inductor is designed for a specific frequency
and current value with some common core geometric structures called EE, block,
pot and toroidal. Since inductors operate at high frequency values, the Kool-Mu
which is a kind of powder core is selected. The Kool-Mu has distributed
homogeneous air gaps and is used in inductor designs that saturation is not desired.
Inductors are designed for EE core, toroidal core, pot core and block core
structures. Electromagnetic modelling of these inductors designed for different
core structures are carried out with finite element analysis (FEA), and
inductance stability, core and winding losses, mechanical specifications and
flux distributions have been reported comparatively. In addition, some
suggestions are derived in core structure definitions for DC-DC converter
inductor design.

Kaynakça

  • [1] H.C. Sartori, J.E. Baggio, and J.R. Pinheiro, “A Comparative Design of an Optmized Boost Inductor Taking Into Account Three Magnetic Materials Technologies: Volume, Cost and Efficiency Analysis”, 10th IEEE/IAS International Conference on Industry Applications (INDUSCON), Fortaleza, Brazil, 2012.
  • [2] Y. Dhahri, S. Ghedira, and R. Zrafi, “The geometrical structure effect of the integrated power inductor for DC-DC converter”, IEEE International Conference on Control, Automation and Diagnosis (ICCAD), Hammamet, Tunisia, 2017, pp.120-124.
  • [3] R. Jensen, and C. R. Sullivan, “Optimal Core Dimensional Ratios for Minimizing Winding Loss in High-Frequency Gapped-Inductor Windings”, IEEE Applied Power Electronics Conference, , 2003, pp.1164–1169.
  • [4] M.S. Rylko, K.J. Hartnett, J.G. Hayes, and M.G. Egan, “Magnetic Material Selection for High Power High Frequency Inductors in DC-DC Converters”, IEEE Twenty-Fourth Annual Applied Power Electronics Conference and Exposition, (APEC), Washington DC, 15-19 Feb. 2009, pp.2043–2049.
  • [5] E. Agheb and H.K. Høidalen, “Modification of empirical core loss calculation methods including flux distribution”, IET Electr. Power Appl., Vol. 7, Issue. 5, pp.381–390, 2013.
  • [6] S. Balci, M.B. Bayram, N. Altin, and I. Sefa, “Inductance and Loss Behaviors of Medium Frequency High Power Gapped Core Inductors”, 5th International Conference on Advanced Technology&Sciences (ICAT), Istanbul, 9-12 May 2017.
  • [7] I. Sefa, N. Altin, S. Ozdemir, S. Balci, M.B. Bayram, and H. Kelebek, “Design and Loss Analysis of LCL Filter Inductors for Two-Level and Three-Level Inverters”, IEEE 22nd International Conference on Applied Electronics, Pilsen, Czech Republic, 5-6 Sept. 2017.
  • [8] I. Sefa, S. Balci, N. Altin, and S. Ozdemir, “Comprehensive analysis of inductors for an interleaved buck converter”, IEEE 15th International Power Electronics and Motion Control Conference (EPE/PEMC), Novi Sad, , 4-6 Sept. 2012, pp-DS2b.5-1 - DS2b.5-7.
  • [9] M.K. Kazimierczuk, “High-frequency magnetic components”, Second Edition, Wiley, Ohio, USA, Chapter 10, 2014, pp.605-607.
  • [10] C.W. T. McLyman, and A.P. Wagner, “Designing high frequency AC inductors using ferrite and molypermalloy powder cores (MPP)”, IEEE Power Electronics Specialists Conference (ESA SP-230), 24-28 June 1985.
  • [11] Magnetics. (2018, 31 December). Powder Core Material KoolMu26u datasheet. [Online]. Access: https://www.mag-inc.com/Media/Magnetics/Datasheets/0078074A7.pdf
  • [12] Ferroxcube. (2018, 31 December). Powder Core Material Pot Core 6656 datasheet, [Online]. Access: www.ferroxcube.com/FerroxcubeCorporateReception
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Selami Balcı 0000-0002-3922-4824

Yayımlanma Tarihi 31 Temmuz 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 3

Kaynak Göster

APA Balcı, S. (2019). DA-DA Dönüştürücü Devreleri için Çeşitli İndüktör Nüve Şekillerinin Elektromanyetik ve Mekanik Etkileri Üzerine Karşılaştırmalı Bir Benzetim. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 7(3), 1130-1139. https://doi.org/10.29130/dubited.505554
AMA Balcı S. DA-DA Dönüştürücü Devreleri için Çeşitli İndüktör Nüve Şekillerinin Elektromanyetik ve Mekanik Etkileri Üzerine Karşılaştırmalı Bir Benzetim. DÜBİTED. Temmuz 2019;7(3):1130-1139. doi:10.29130/dubited.505554
Chicago Balcı, Selami. “DA-DA Dönüştürücü Devreleri için Çeşitli İndüktör Nüve Şekillerinin Elektromanyetik Ve Mekanik Etkileri Üzerine Karşılaştırmalı Bir Benzetim”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 7, sy. 3 (Temmuz 2019): 1130-39. https://doi.org/10.29130/dubited.505554.
EndNote Balcı S (01 Temmuz 2019) DA-DA Dönüştürücü Devreleri için Çeşitli İndüktör Nüve Şekillerinin Elektromanyetik ve Mekanik Etkileri Üzerine Karşılaştırmalı Bir Benzetim. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 7 3 1130–1139.
IEEE S. Balcı, “DA-DA Dönüştürücü Devreleri için Çeşitli İndüktör Nüve Şekillerinin Elektromanyetik ve Mekanik Etkileri Üzerine Karşılaştırmalı Bir Benzetim”, DÜBİTED, c. 7, sy. 3, ss. 1130–1139, 2019, doi: 10.29130/dubited.505554.
ISNAD Balcı, Selami. “DA-DA Dönüştürücü Devreleri için Çeşitli İndüktör Nüve Şekillerinin Elektromanyetik Ve Mekanik Etkileri Üzerine Karşılaştırmalı Bir Benzetim”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 7/3 (Temmuz 2019), 1130-1139. https://doi.org/10.29130/dubited.505554.
JAMA Balcı S. DA-DA Dönüştürücü Devreleri için Çeşitli İndüktör Nüve Şekillerinin Elektromanyetik ve Mekanik Etkileri Üzerine Karşılaştırmalı Bir Benzetim. DÜBİTED. 2019;7:1130–1139.
MLA Balcı, Selami. “DA-DA Dönüştürücü Devreleri için Çeşitli İndüktör Nüve Şekillerinin Elektromanyetik Ve Mekanik Etkileri Üzerine Karşılaştırmalı Bir Benzetim”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, c. 7, sy. 3, 2019, ss. 1130-9, doi:10.29130/dubited.505554.
Vancouver Balcı S. DA-DA Dönüştürücü Devreleri için Çeşitli İndüktör Nüve Şekillerinin Elektromanyetik ve Mekanik Etkileri Üzerine Karşılaştırmalı Bir Benzetim. DÜBİTED. 2019;7(3):1130-9.