Conference Paper
BibTex RIS Cite

Momordica Charantia'nın Sıçan Ayak İltihabı ve Davranışı Üzerine Etkilerinin İncelenmesi; deneysel Model.

Year 2021, Volume: 6 Issue: 1, 112 - 119, 31.03.2021
https://doi.org/10.35229/jaes.835178

Abstract

Arka plan: Ağrı, vücudun herhangi bir yerinden kaynaklanan, gerçek veya olası doku hasarı ile ilişkilendirilen ve insanın geçmiş deneyimleriyle bağlantılı hoş olmayan bir his olan yaygın deneyimlerden biridir. Momordica Charantia (MC) veya acı kavun, güçlü biyolojik etkiye sahip birçok biyoaktif bileşenin varlığından dolayı, dünyanın her yerinde başlıca diyabet, kanser ve iltihaplanma ile ilişkili durumların tedavisinde kullanılmaktadır. Çalışmamızın amacı, düşük ve yüksek dozda MC bitkisinin ayak iltihabını ve hayvan davranışını nasıl etkilediğini araştırmaktır.
Gereç ve Yöntemler: On altı erkek sıçan rastgele 4 deney grubuna ayrıldı. Ağrı modelini indüklemek için formaldehit (arka pençe formalin enjeksiyonu) uygulandı. 24 saat sonra MC (50 mg / kg, 200 mg / kg), beş gün boyunca her gün uygulandı. Deney sırasında ağrı eşikleri, motor korteks ölçümleri ve iltihaplı ayak hacmi, Lokomotor Aktivite Testi ve Su Taşma Yöntemi sırayla.
Bulgular: Sonucumuza göre kontrol grubumuzun ayak hacmi, ağrı eşiği ve motor korteks verilerini dikkate aldığımızda başlangıç ​​ile son gün arasında anlamlı bir fark yokken, 7. günde ağrı eşiği düşmeye devam ediyor Pozitif kontrol grubumuzdaki hayvanlarımızın ayak hacmi azalmadığı için. 200 mg MC konsantrasyonu artan ayak hacmini azaltarak aynı zamanda ağrı eşiğini azaltarak harika bir tedavi sağlamıştır ve motor aktivite 4. günde en yüksek seviyededir.
Sonuç: Deneyimiz, MC'nin (200 mg / ml MC) yüksek analjezik aktiviteye sahip olduğunu, belirgin ağrı azalması ve semptomlarda iyileşme sağladığını göstermektedir.

Supporting Institution

yok

Project Number

yok

References

  • 1. Raja, S.N., et al., The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain, 2020.
  • 2. Williams, A.C., C. Eccleston, and S. Morley, Psychological therapies for the management of chronic pain (excluding headache) in adults. Cochrane Database Syst Rev, 2012. 11: p. CD007407.
  • 3. Schug, S.A. and C. Goddard, Recent advances in the pharmacological management of acute and chronic pain. Ann Palliat Med, 2014. 3(4): p. 263-75.
  • 4. Moseley, G.L. and H. Flor, Targeting cortical representations in the treatment of chronic pain: a review. Neurorehabil Neural Repair, 2012. 26(6): p. 646-52.
  • 5. Smolen, J.S., et al., EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs. Ann Rheum Dis, 2010. 69(6): p. 964-75.
  • 6. Cheney, J.E. and C.H. Collins, Formaldehyde disinfection in laboratories: limitations and hazards. Br J Biomed Sci, 1995. 52(3): p. 195-201.
  • 7. Restani, P. and C.L. Galli, Oral toxicity of formaldehyde and its derivatives. Crit Rev Toxicol, 1991. 21(5): p. 315-28.
  • 8. Zararsiz, I., et al., Melatonin prevents formaldehyde-induced neurotoxicity in prefrontal cortex of rats: an immunohistochemical and biochemical study. Cell Biochem Funct, 2007. 25(4): p. 413-8.
  • 9. Ozen, O.A., et al., Effect of formaldehyde inhalation on Hsp70 in seminiferous tubules of rat testes: an immunohistochemical study. Toxicol Ind Health, 2005. 21(10): p. 249-54.
  • 10. Nilsson, J.A., et al., Toxicity of formaldehyde to human oral fibroblasts and epithelial cells: influences of culture conditions and role of thiol status. J Dent Res, 1998. 77(11): p. 1896-903.
  • 11. Kim, H., Y.D. Kim, and S.H. Cho, Formaldehyde exposure levels and serum antibodies to formaldehyde-human serum albumin of Korean medical students. Arch Environ Health, 1999. 54(2): p. 115-8.
  • 12. Thrasher, J.D. and K.H. Kilburn, Embryo toxicity and teratogenicity of formaldehyde. Arch Environ Health, 2001. 56(4): p. 300-11.
  • 13. Songur, A., O.A. Ozen, and M. Sarsilmaz, The toxic effects of formaldehyde on the nervous system. Rev Environ Contam Toxicol, 2010. 203: p. 105-18.
  • 14. Usanmaz, S.E., E.S. Akarsu, and N. Vural, Neurotoxic effects of acute and subacute formaldehyde exposures in mice. Environ Toxicol Pharmacol, 2002. 11(2): p. 93-100.
  • 15. Geneva, W.H.O.a.P.U.T.J.S.o.T.U.N.E.P.T.İ.L.O.F.E.H.C., 1989. 176–80.
  • 16. Songur, A., et al., The effects of inhaled formaldehyde on oxidant and antioxidant systems of rat cerebellum during the postnatal development process. Toxicol Mech Methods, 2008. 18(7): p. 569-74.
  • 17. Zararsiz, I., et al., Protective effects of omega-3 essential fatty acids against formaldehyde-induced neuronal damage in prefrontal cortex of rats. Cell Biochem Funct, 2006. 24(3): p. 237-44.
  • 18. Clavelou, P., et al., The orofacial formalin test in rats: effects of different formalin concentrations. Pain, 1995. 62(3): p. 295-301.
  • 19. Coderre, T.J. and R. Melzack, The role of NMDA receptor-operated calcium channels in persistent nociception after formalin-induced tissue injury. J Neurosci, 1992. 12(9): p. 3671-5.
  • 20. Azhdari-Zarmehri, H., et al., Orexin receptor type-1 antagonist SB-334867 decreases morphine-induced antinociceptive effect in formalin test. Pharmacol Biochem Behav, 2013. 112: p. 64-70.
  • 21. Dubuisson, D. and S.G. Dennis, The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain, 1977. 4(2): p. 161-74.
  • 22. Erami, E., et al., Intra-paragigantocellularis lateralis injection of orexin-A has an antinociceptive effect on hot plate and formalin tests in rat. Brain Res, 2012. 1478: p. 16-23.
  • 23. Gheibi, N., M. Saroukhani, and H. Azhdari-Zarmehri, The effect of food deprivation on nociception in formalin test and plasma levels of noradrenaline and corticosterone in rats. Basic Clin Neurosci, 2013. 4(4): p. 341-7.
  • 24. Hunskaar S, H.K., The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain, 1987. 30(1): p. 103-14.
  • 25. Heidari-Oranjaghi, N., et al., Antagonism of orexin-1 receptors attenuates swim- and restraint stress-induced antinociceptive behaviors in formalin test. Pharmacol Biochem Behav, 2012. 103(2): p. 299-307.
  • 26. Zhang, F., L. Lin, and J. Xie, A mini-review of chemical and biological properties of polysaccharides from Momordica charantia. Int J Biol Macromol, 2016. 92: p. 246-253.
  • 27. Polito, L., et al., Plants Producing Ribosome-Inactivating Proteins in Traditional Medicine. Molecules, 2016. 21(11).
  • 28. Grover, J.K. and S.P. Yadav, Pharmacological actions and potential uses of Momordica charantia: a review. J Ethnopharmacol, 2004. 93(1): p. 123-32.
  • 29. Scartezzini P, S.E., Review on some plants of Indian traditional medicine with antioxidant activity. 2000. 71((1-2)): p. 23-43.
  • 30. Minihane, A.M., et al., Low-grade inflammation, diet composition and health: current research evidence and its translation. Br J Nutr, 2015. 114(7): p. 999-1012.
  • 31. Alam, M.A., et al., Beneficial role of bitter melon supplementation in obesity and related complications in metabolic syndrome. J Lipids, 2015. 2015: p. 496169.
  • 32. Biswas, S.K., Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxid Med Cell Longev, 2016. 2016: p. 5698931.
  • 33. Chao, C.Y., et al., Anti-inflammatory effect of Momordica charantia in sepsis mice. Molecules, 2014. 19(8): p. 12777-88.
  • 34. Kobori, M., et al., Bitter gourd suppresses lipopolysaccharide-induced inflammatory responses. J Agric Food Chem, 2008. 56(11): p. 4004-11.
  • 35. Kobori, M., et al., Alpha-eleostearic acid and its dihydroxy derivative are major apoptosis-inducing components of bitter gourd. J Agric Food Chem, 2008. 56(22): p. 10515-20.
  • 36. Lii, C.K., et al., Suppressive effects of wild bitter gourd (Momordica charantia Linn. var. abbreviata ser.) fruit extracts on inflammatory responses in RAW264.7 macrophages. J Ethnopharmacol, 2009. 122(2): p. 227-33.
  • 37. Hsu, C., et al., Inhibitory effects of new varieties of bitter melon on lipopolysaccharide-stimulated inflammatory response in RAW 264.7 cells. . J. Funct. Foods 2013. 5: p. 1829–1837.
  • 38. Yang, W.S., et al., Momordica charantia Inhibits Inflammatory Responses in Murine Macrophages via Suppression of TAK1. Am J Chin Med, 2018. 46(2): p. 435-452.
  • 39. Cheng, H.L., et al., EMCD, a hypoglycemic triterpene isolated from Momordica charantia wild variant, attenuates TNF-alpha-induced inflammation in FL83B cells in an AMP-activated protein kinase-independent manner. Eur J Pharmacol, 2012. 689(1-3): p. 241-8.
  • 40. Xu, J., et al., Bitter gourd inhibits the development of obesity-associated fatty liver in C57BL/6 mice fed a high-fat diet. J Nutr, 2014. 144(4): p. 475-83.
  • 41. Bao, B., et al., Momordica charantia (Bitter Melon) reduces obesity-associated macrophage and mast cell infiltration as well as inflammatory cytokine expression in adipose tissues. PLoS One, 2013. 8(12): p. e84075.
  • 42. Randall, L.O. and J.J. Selitto, A method for measurement of analgesic activity on inflamed tissue. Arch Int Pharmacodyn Ther, 1957. 111(4): p. 409-19.
  • 43. Hacimuftuoglu, A., et al., The analgesic effect of metformin on paclitaxel-induced neuropathic pain model in rats: By considering pathological results. J Cancer Res Ther, 2020. 16(1): p. 34-39.
  • 44. Sturman, O., P.L. Germain, and J. Bohacek, Exploratory rearing: a context- and stress-sensitive behavior recorded in the open-field test. Stress, 2018. 21(5): p. 443-452.
  • 45. Raish, M., et al., Momordica charantia polysaccharides ameliorate oxidative stress, inflammation, and apoptosis in ethanol-induced gastritis in mucosa through NF-kB signaling pathway inhibition. Int J Biol Macromol, 2018. 111: p. 193-199.
  • 46. Jain, V., et al., Antinociceptive and antiallodynic effects of Momordica charantia L. in tibial and sural nerve transection-induced neuropathic pain in rats. Nutr Neurosci, 2014. 17(2): p. 88-96.
  • 47. Kang, Y.M., et al., Novel effect of mineralocorticoid receptor antagonism to reduce proinflammatory cytokines and hypothalamic activation in rats with ischemia-induced heart failure. Circ Res, 2006. 99(7): p. 758-66.
  • 48. Leung, L. and C.M. Cahill, TNF-alpha and neuropathic pain--a review. J Neuroinflammation, 2010. 7: p. 27.
  • 49. Malik, Z.A., M. Singh, and P.L. Sharma, Neuroprotective effect of Momordica charantia in global cerebral ischemia and reperfusion induced neuronal damage in diabetic mice. J Ethnopharmacol, 2011. 133(2): p. 729-34.
  • 50. Choi, J., et al., Anti-rheumatoid arthritis effect of the Kochia scoparia fruits and activity comparison of momordin lc, its prosapogenin and sapogenin. Arch Pharm Res, 2002. 25(3): p. 336-42.
  • 51. Soo May, L., et al., The effects of Momordica charantia (bitter melon) supplementation in patients with primary knee osteoarthritis: A single-blinded, randomized controlled trial. Complement Ther Clin Pract, 2018. 32: p. 181-186.

Investigation Of Momordica Charantia Effects On The Rat Foot Inflammation And Behavior; experimental Model.

Year 2021, Volume: 6 Issue: 1, 112 - 119, 31.03.2021
https://doi.org/10.35229/jaes.835178

Abstract

Background: Pain is one of the common experiences which is unpleasant feeling that originates from any part of the body, is associated with real or possible tissue damage and linked to human past experiences. Momordica Charantia (MC) or bitter melon mainly is used all around the world for the treatment of diabetes, cancer and inflammation- associated conditions due to the existence of many bioactive ingredients which have vigorous biologic effect. The aim of our study is to investigate how low and high doses of MC plant affect foot inflammation and animal's behavior.
Materials and Methods: Sixteen male rats randomly divided into 4 experimental groups. Formaldehyde was (hind-paw formalin injection) administered for inducing pain model. After 24 hours MC (50 mg/kg, 200 mg/kg) was administered every day for five days. During the experiment, the pain thresholds, motor cortex measurements and inflamed foot volume, Locomotor Activity Test and Water Overflow Method in sequence.
Results: According to our result, when we consider the foot volume, pain threshold and motor cortex data of our control group, there is no significant difference between the beginning and the last day, while On the 7th day, the pain threshold continues to decrease as the foot volume of our animals in our positive control group does not decrease. 200 mg concentration of MC has provided a great treatment by reducing the increasing foot volume at the same time pain threshold and motor activity was in highest level at 4th day.
Conclusion: Our experiment shows that MC (200 mg/ml MC ) has high analgesic activity provides significant pain reduction and improvement in symptoms

Project Number

yok

References

  • 1. Raja, S.N., et al., The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain, 2020.
  • 2. Williams, A.C., C. Eccleston, and S. Morley, Psychological therapies for the management of chronic pain (excluding headache) in adults. Cochrane Database Syst Rev, 2012. 11: p. CD007407.
  • 3. Schug, S.A. and C. Goddard, Recent advances in the pharmacological management of acute and chronic pain. Ann Palliat Med, 2014. 3(4): p. 263-75.
  • 4. Moseley, G.L. and H. Flor, Targeting cortical representations in the treatment of chronic pain: a review. Neurorehabil Neural Repair, 2012. 26(6): p. 646-52.
  • 5. Smolen, J.S., et al., EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs. Ann Rheum Dis, 2010. 69(6): p. 964-75.
  • 6. Cheney, J.E. and C.H. Collins, Formaldehyde disinfection in laboratories: limitations and hazards. Br J Biomed Sci, 1995. 52(3): p. 195-201.
  • 7. Restani, P. and C.L. Galli, Oral toxicity of formaldehyde and its derivatives. Crit Rev Toxicol, 1991. 21(5): p. 315-28.
  • 8. Zararsiz, I., et al., Melatonin prevents formaldehyde-induced neurotoxicity in prefrontal cortex of rats: an immunohistochemical and biochemical study. Cell Biochem Funct, 2007. 25(4): p. 413-8.
  • 9. Ozen, O.A., et al., Effect of formaldehyde inhalation on Hsp70 in seminiferous tubules of rat testes: an immunohistochemical study. Toxicol Ind Health, 2005. 21(10): p. 249-54.
  • 10. Nilsson, J.A., et al., Toxicity of formaldehyde to human oral fibroblasts and epithelial cells: influences of culture conditions and role of thiol status. J Dent Res, 1998. 77(11): p. 1896-903.
  • 11. Kim, H., Y.D. Kim, and S.H. Cho, Formaldehyde exposure levels and serum antibodies to formaldehyde-human serum albumin of Korean medical students. Arch Environ Health, 1999. 54(2): p. 115-8.
  • 12. Thrasher, J.D. and K.H. Kilburn, Embryo toxicity and teratogenicity of formaldehyde. Arch Environ Health, 2001. 56(4): p. 300-11.
  • 13. Songur, A., O.A. Ozen, and M. Sarsilmaz, The toxic effects of formaldehyde on the nervous system. Rev Environ Contam Toxicol, 2010. 203: p. 105-18.
  • 14. Usanmaz, S.E., E.S. Akarsu, and N. Vural, Neurotoxic effects of acute and subacute formaldehyde exposures in mice. Environ Toxicol Pharmacol, 2002. 11(2): p. 93-100.
  • 15. Geneva, W.H.O.a.P.U.T.J.S.o.T.U.N.E.P.T.İ.L.O.F.E.H.C., 1989. 176–80.
  • 16. Songur, A., et al., The effects of inhaled formaldehyde on oxidant and antioxidant systems of rat cerebellum during the postnatal development process. Toxicol Mech Methods, 2008. 18(7): p. 569-74.
  • 17. Zararsiz, I., et al., Protective effects of omega-3 essential fatty acids against formaldehyde-induced neuronal damage in prefrontal cortex of rats. Cell Biochem Funct, 2006. 24(3): p. 237-44.
  • 18. Clavelou, P., et al., The orofacial formalin test in rats: effects of different formalin concentrations. Pain, 1995. 62(3): p. 295-301.
  • 19. Coderre, T.J. and R. Melzack, The role of NMDA receptor-operated calcium channels in persistent nociception after formalin-induced tissue injury. J Neurosci, 1992. 12(9): p. 3671-5.
  • 20. Azhdari-Zarmehri, H., et al., Orexin receptor type-1 antagonist SB-334867 decreases morphine-induced antinociceptive effect in formalin test. Pharmacol Biochem Behav, 2013. 112: p. 64-70.
  • 21. Dubuisson, D. and S.G. Dennis, The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain, 1977. 4(2): p. 161-74.
  • 22. Erami, E., et al., Intra-paragigantocellularis lateralis injection of orexin-A has an antinociceptive effect on hot plate and formalin tests in rat. Brain Res, 2012. 1478: p. 16-23.
  • 23. Gheibi, N., M. Saroukhani, and H. Azhdari-Zarmehri, The effect of food deprivation on nociception in formalin test and plasma levels of noradrenaline and corticosterone in rats. Basic Clin Neurosci, 2013. 4(4): p. 341-7.
  • 24. Hunskaar S, H.K., The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain, 1987. 30(1): p. 103-14.
  • 25. Heidari-Oranjaghi, N., et al., Antagonism of orexin-1 receptors attenuates swim- and restraint stress-induced antinociceptive behaviors in formalin test. Pharmacol Biochem Behav, 2012. 103(2): p. 299-307.
  • 26. Zhang, F., L. Lin, and J. Xie, A mini-review of chemical and biological properties of polysaccharides from Momordica charantia. Int J Biol Macromol, 2016. 92: p. 246-253.
  • 27. Polito, L., et al., Plants Producing Ribosome-Inactivating Proteins in Traditional Medicine. Molecules, 2016. 21(11).
  • 28. Grover, J.K. and S.P. Yadav, Pharmacological actions and potential uses of Momordica charantia: a review. J Ethnopharmacol, 2004. 93(1): p. 123-32.
  • 29. Scartezzini P, S.E., Review on some plants of Indian traditional medicine with antioxidant activity. 2000. 71((1-2)): p. 23-43.
  • 30. Minihane, A.M., et al., Low-grade inflammation, diet composition and health: current research evidence and its translation. Br J Nutr, 2015. 114(7): p. 999-1012.
  • 31. Alam, M.A., et al., Beneficial role of bitter melon supplementation in obesity and related complications in metabolic syndrome. J Lipids, 2015. 2015: p. 496169.
  • 32. Biswas, S.K., Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxid Med Cell Longev, 2016. 2016: p. 5698931.
  • 33. Chao, C.Y., et al., Anti-inflammatory effect of Momordica charantia in sepsis mice. Molecules, 2014. 19(8): p. 12777-88.
  • 34. Kobori, M., et al., Bitter gourd suppresses lipopolysaccharide-induced inflammatory responses. J Agric Food Chem, 2008. 56(11): p. 4004-11.
  • 35. Kobori, M., et al., Alpha-eleostearic acid and its dihydroxy derivative are major apoptosis-inducing components of bitter gourd. J Agric Food Chem, 2008. 56(22): p. 10515-20.
  • 36. Lii, C.K., et al., Suppressive effects of wild bitter gourd (Momordica charantia Linn. var. abbreviata ser.) fruit extracts on inflammatory responses in RAW264.7 macrophages. J Ethnopharmacol, 2009. 122(2): p. 227-33.
  • 37. Hsu, C., et al., Inhibitory effects of new varieties of bitter melon on lipopolysaccharide-stimulated inflammatory response in RAW 264.7 cells. . J. Funct. Foods 2013. 5: p. 1829–1837.
  • 38. Yang, W.S., et al., Momordica charantia Inhibits Inflammatory Responses in Murine Macrophages via Suppression of TAK1. Am J Chin Med, 2018. 46(2): p. 435-452.
  • 39. Cheng, H.L., et al., EMCD, a hypoglycemic triterpene isolated from Momordica charantia wild variant, attenuates TNF-alpha-induced inflammation in FL83B cells in an AMP-activated protein kinase-independent manner. Eur J Pharmacol, 2012. 689(1-3): p. 241-8.
  • 40. Xu, J., et al., Bitter gourd inhibits the development of obesity-associated fatty liver in C57BL/6 mice fed a high-fat diet. J Nutr, 2014. 144(4): p. 475-83.
  • 41. Bao, B., et al., Momordica charantia (Bitter Melon) reduces obesity-associated macrophage and mast cell infiltration as well as inflammatory cytokine expression in adipose tissues. PLoS One, 2013. 8(12): p. e84075.
  • 42. Randall, L.O. and J.J. Selitto, A method for measurement of analgesic activity on inflamed tissue. Arch Int Pharmacodyn Ther, 1957. 111(4): p. 409-19.
  • 43. Hacimuftuoglu, A., et al., The analgesic effect of metformin on paclitaxel-induced neuropathic pain model in rats: By considering pathological results. J Cancer Res Ther, 2020. 16(1): p. 34-39.
  • 44. Sturman, O., P.L. Germain, and J. Bohacek, Exploratory rearing: a context- and stress-sensitive behavior recorded in the open-field test. Stress, 2018. 21(5): p. 443-452.
  • 45. Raish, M., et al., Momordica charantia polysaccharides ameliorate oxidative stress, inflammation, and apoptosis in ethanol-induced gastritis in mucosa through NF-kB signaling pathway inhibition. Int J Biol Macromol, 2018. 111: p. 193-199.
  • 46. Jain, V., et al., Antinociceptive and antiallodynic effects of Momordica charantia L. in tibial and sural nerve transection-induced neuropathic pain in rats. Nutr Neurosci, 2014. 17(2): p. 88-96.
  • 47. Kang, Y.M., et al., Novel effect of mineralocorticoid receptor antagonism to reduce proinflammatory cytokines and hypothalamic activation in rats with ischemia-induced heart failure. Circ Res, 2006. 99(7): p. 758-66.
  • 48. Leung, L. and C.M. Cahill, TNF-alpha and neuropathic pain--a review. J Neuroinflammation, 2010. 7: p. 27.
  • 49. Malik, Z.A., M. Singh, and P.L. Sharma, Neuroprotective effect of Momordica charantia in global cerebral ischemia and reperfusion induced neuronal damage in diabetic mice. J Ethnopharmacol, 2011. 133(2): p. 729-34.
  • 50. Choi, J., et al., Anti-rheumatoid arthritis effect of the Kochia scoparia fruits and activity comparison of momordin lc, its prosapogenin and sapogenin. Arch Pharm Res, 2002. 25(3): p. 336-42.
  • 51. Soo May, L., et al., The effects of Momordica charantia (bitter melon) supplementation in patients with primary knee osteoarthritis: A single-blinded, randomized controlled trial. Complement Ther Clin Pract, 2018. 32: p. 181-186.
There are 51 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Aybike Turkmen This is me 0000-0002-4119-7490

Ali Taghizadehghalehjoughi 0000-0002-3506-0324

Maryam Mohammadzadeh 0000-0003-1220-1697

Sıdıka Genç 0000-0003-0000-5103

Ahmet Hacimuftuoglu 0000-0002-9658-3313

Project Number yok
Publication Date March 31, 2021
Submission Date December 3, 2020
Acceptance Date February 24, 2021
Published in Issue Year 2021 Volume: 6 Issue: 1

Cite

APA Turkmen, A., Taghizadehghalehjoughi, A., Mohammadzadeh, M., Genç, S., et al. (2021). Investigation Of Momordica Charantia Effects On The Rat Foot Inflammation And Behavior; experimental Model. Journal of Anatolian Environmental and Animal Sciences, 6(1), 112-119. https://doi.org/10.35229/jaes.835178


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS