Year 2021,
Volume: 9 Issue: 1, 36 - 41, 01.03.2021
Harishchandra Ramane
,
B Parvathalu
Project Number
F.510/3/ DRS-III /2016 (SAP-I)
References
-
[1] Buckley, F.: Iterated line graphs. Congr. Numer. 33, 390–394 (1981).
-
[2] Buckley, F.: The size of iterated line graphs. Graph Theory Notes of New York. 25, 33–36 (1993).
-
[3] Cvetkovic, D., Rowlinson, P., Simic, S.: Introduction to the Theory of Graph Spectra. Cambridge University
Press. Cambridge (2010).
-
[4] Gutman, I.: The energy of a graph. Ber. Math. Stat. Sekt. Forschungsz. Graz. 103, 1–22 (1978).
-
[5] Harary, F.: Graph Theory. Addison-Wesley Publishing Co., Reading (1969).
-
[6] Ivanciuc, O., Ivanciuc, T., Balaban, A. T.: The complementary distance matrix, a new moleculargraph metric. ACHModels
Chem. 137, 57–82 (2000).
-
[7] Indulal, G.: D-spectrum and D-energy of complements of iterated line graphs of regular graphs. J. Alg. Stru. Appl. 4,
51–56 (2017). https://doi.org/10.29252/asta.4.1.51
-
[8] Jenežic, D., Milicevic, A., Nikolic, S., Trinajstic, N.: Graph Theoretical Matrices in Chemistry. University of
Kragujevac. Kragujevac (2007). https://doi.org/10.1021/ci700278s
-
[9] Li, X., Shi, Y., Gutman, I.: Graph Energy. Springer. New York (2012). https://doi.org/10.1007/978-1-4614-4220-2
-
[10] Ramane, H. S., Gudodagi, G. A.: Reciprocal complementary equienergetic graphs. Asian-European J. Math. 9, ID:
1650084, pages 15 (2016). https://doi.org/10.1142/S1793557116500844
-
[11] Ramane, H. S., Yalnaik,A. S.: Reciprocal complementary distance spectra and reciprocal complementary
distance energy of line graphs of regular graphs. El. J. Graph Theory Appl. 3, 228–236 (2015).
http://dx.doi.org/10.5614/ejgta.2015.3.2.10
-
[12] Sachs, H.: Über selbstkomplementare Graphen. Publ. Math. Debrecen. 9, 270–288 (1962).
-
[13] Sachs, H.: Über Teiler, Faktoren und charakteristische Polynome von Graphen, Teil II. Wiss. Z. TH Ilmenau. 13,
405–412 (1967).
Reciprocal Complementary Distance Energy of Complement of Line Graphs of Regular Graphs
Year 2021,
Volume: 9 Issue: 1, 36 - 41, 01.03.2021
Harishchandra Ramane
,
B Parvathalu
Abstract
The reciprocal complementary distance ($RCD$) matrix of a graph $G$ is defined as $RCD(G) = [r_{ij}]$, where $r_{ij} = \frac{1}{1+D-d_{ij}}$ if $i \neq j$ and $r_{ij} = 0$, otherwise, where $D$ is the diameter of $G$ and $d_{ij}$ is the distance between the vertices $v_i$ and $v_j$ in $G$. The $RCD$-energy of $G$ is defined as the sum of the absolute values of the eigenvalues of $RCD$-matrix. Two graphs are said to be $RCD$-equienergetic if they have same $RCD$-energy. In this paper, the $RCD$-energy of the complement of line graphs of certain regular graphs in terms of the order and degree is obtained and as a consequence, pairs of $RCD$-equienergetic graphs of same order and having different $RCD$-eigenvalues are constructed.
Supporting Institution
University Grants Commission (UGC), New Delhi
Project Number
F.510/3/ DRS-III /2016 (SAP-I)
Thanks
The author HSR is thankful to the University Grants Commission (UGC), New Delhi, for support through UGC-SAP DRS-III, 2016-2021: F.510/3/ DRS-III /2016 (SAP-I).
References
-
[1] Buckley, F.: Iterated line graphs. Congr. Numer. 33, 390–394 (1981).
-
[2] Buckley, F.: The size of iterated line graphs. Graph Theory Notes of New York. 25, 33–36 (1993).
-
[3] Cvetkovic, D., Rowlinson, P., Simic, S.: Introduction to the Theory of Graph Spectra. Cambridge University
Press. Cambridge (2010).
-
[4] Gutman, I.: The energy of a graph. Ber. Math. Stat. Sekt. Forschungsz. Graz. 103, 1–22 (1978).
-
[5] Harary, F.: Graph Theory. Addison-Wesley Publishing Co., Reading (1969).
-
[6] Ivanciuc, O., Ivanciuc, T., Balaban, A. T.: The complementary distance matrix, a new moleculargraph metric. ACHModels
Chem. 137, 57–82 (2000).
-
[7] Indulal, G.: D-spectrum and D-energy of complements of iterated line graphs of regular graphs. J. Alg. Stru. Appl. 4,
51–56 (2017). https://doi.org/10.29252/asta.4.1.51
-
[8] Jenežic, D., Milicevic, A., Nikolic, S., Trinajstic, N.: Graph Theoretical Matrices in Chemistry. University of
Kragujevac. Kragujevac (2007). https://doi.org/10.1021/ci700278s
-
[9] Li, X., Shi, Y., Gutman, I.: Graph Energy. Springer. New York (2012). https://doi.org/10.1007/978-1-4614-4220-2
-
[10] Ramane, H. S., Gudodagi, G. A.: Reciprocal complementary equienergetic graphs. Asian-European J. Math. 9, ID:
1650084, pages 15 (2016). https://doi.org/10.1142/S1793557116500844
-
[11] Ramane, H. S., Yalnaik,A. S.: Reciprocal complementary distance spectra and reciprocal complementary
distance energy of line graphs of regular graphs. El. J. Graph Theory Appl. 3, 228–236 (2015).
http://dx.doi.org/10.5614/ejgta.2015.3.2.10
-
[12] Sachs, H.: Über selbstkomplementare Graphen. Publ. Math. Debrecen. 9, 270–288 (1962).
-
[13] Sachs, H.: Über Teiler, Faktoren und charakteristische Polynome von Graphen, Teil II. Wiss. Z. TH Ilmenau. 13,
405–412 (1967).