TY - JOUR T1 - BORSA İSTANBUL’DA GÜRÜLTÜYE DAYALI İŞLEM: EGARCH-M MODELİ İLE GETİRİ ORANLARI ÜZERİNDEKİ GÜRÜLTÜ ETKİSİNİN ÖLÇÜMESİ TT - Noise Trading in Borsa Istanbul: Measuring the Noise Effect on Returns by Egarch-M Model AU - Altay, Erdinç AU - Bahar, Serdar PY - 2022 DA - December DO - 10.17065/huniibf.1004363 JF - Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi PB - Hacettepe University WT - DergiPark SN - 1301-8752 SP - 721 EP - 741 VL - 40 IS - 4 LA - tr AB - Varlıkların temel değeri üzerinde etkisi olması gereken bilgi dışında yer alan ve rasyonel temelli alım satım işlemi dışında yeni bir habere dayalı olmayan işlemler olarak tanımlanabilen gürültüye dayalı işlemin finansal varlıkların fiyatları üzerinde bozucu bir etkiye sahip olduğu ve gürültüye dayalı işlem riskini oluşturduğu yaygın bir görüş olarak literatürde yer almaktadır. Gürültü olgusunun varlığı ve varlık fiyatları üzerindeki etkisinin ölçülmesi ise birbirinden oldukça farklı yöntemlerle yapılmaya çalışılmaktadır. Bu çalışmada 20.04.2000-17.09.2021 döneminde BİST-100 endeksi finansal zaman serilerinin gösterdiği değişen varyans, kalın kuyruklu dağılım ve bilgiye karşı asimetrik reaksiyona uygun bir yaklaşım olan EGARCH-M yöntemi ile modellenerek getiri oranı üzerindeki gürültü ve bilgi etkilerinin tahmin edilmesi amaçlanmıştır. Böylelikle alternatif gürültü ölçüm yaklaşımlarının literatürde belirtilen dezavantajlara sahip olmayan bir yöntemle gürültünün Borsa İstanbul’daki varlığının ölçümü ve gürültü riskinin zaman içindeki değişimi ortaya konulmuştur. Elde edilen bulgular piyasaya giren bilginin BİST-100 endeksi volatilitesi üzerindeki etkisinin asimetrik olduğu, olumsuz bilgilerin etkisinin olumlu bilgilerden daha fazla olduğu, gürültünün BİST-100 endeksi getiri oranları üzerindeki etki ortalamasının artırıcı, bilginin ise düşürücü olduğu ancak her iki etki ortalamasının da istatistiksel olarak anlamlı olmaması nedeniyle tahmin edilebilirliklerinin güç olduğu şeklindedir. KW - Gürültü KW - Gürültüye dayalı işlem KW - irrasyonel yatırımcılar KW - EGARCH-M modeli KW - Noise KW - Noise Trading KW - Irrational Investors KW - EGARCH-M Model N2 - In the literature it is a common view that the noise trading, which can be defined as non-informative transactions which are not based on new information has distorting effects on the prices of financial assets and creates noise trading risk in the market. The presence of noise and its effect on asset prices are tried to be measured by using quite different methods. In this study, the noise and information effects on the BIST-100 index returns are estimated in the period of 20.04.2000-17.09.2021 by employing an EGARCH-M model, which is an approach suitable for the heteroscedasticity, leptocurtic distribution and asymmetric reaction to information. EGARCH-M method enables the measurement of noise in Borsa Istanbul and the change of noise risk over time by avoiding the disadvantages of alternative noise measurement approaches. The findings show that the effect of the information on BIST-100 index volatility presents asymmetric characteristics. According to the evidence, the effect of negative information is higher than the effect of positive information. The results show that noise has increasing effect on BIST-100 index returns while information has decreasing effect, but we can conclude that the effects of noise and information are unpredictable because both effects are statistically insignificant. CR - Abbasian, E., & Farzanegan, E. (2011). Tehran stock exchange bubbles and noise traders behavior. Journal of Economic Research, 46(3), 133-153. CR - Abbasian, E., Farzanegan. E., & Nasiroleslami, E. (2016). Price bubble anomalies in Tehran stock exchange: Limits to arbitrage approach. Quarterly Journal of Economic Research and Policies, 23(76), 75-92. http://qjerp.ir/article-1-976-en.html CR - Akel, V. (2011). Kriz Dönemlerinde Finansal Piyasalar Arasındaki Volatilite Yayılma Etkisi, Ankara, Detay Yayıncılık. CR - Baklacı, H., Olgun, O., & Can, E. (2011). Noise traders: A new approach to understand the phantom of stock markets. Applied Economic Letters, 18, 1028-1045, https://doi.org/10.1080/13504851.2010.522513 Barber, B. M., Odean, T., & Zhu, N. (2005). Do noise traders move market. EFA 2006 Zurich Meetings Paper, 1-38. CR - Barber, B., & Odean, T. (2008). All that glitters: The effect of attention and news on the buying behavior of individual and institutional investors. The Review of Financial Studies, 21, 785-818. https://doi.org/10.1093/rfs/hhm079 CR - Barber, B., Odean T., & Zhu, N. (2009). Systematic noise. Journal of Financial Markets, 12, 547-569. https://doi.org/10.1016/j.finmar.2009.03.003 CR - Black, F. (1986). Noise. Journal of Finance, 41(3), 529-543. https://doi.org/10.1111/j.1540-6261.1986.tb04513.x CR - Bender, J., Carol, O., & David, S. (2013). Noise trading and illusory correlation in US equity market. Review of Finance, 17, 630,649. https://doi.org/10.1093/rof/rfr037 CR - Bilir, H. (2018). Piyasalar rasyonel mi? Etkin piyasalar hipotezi ve piyasa anomalileri. Social Sciences Studies Journal, 4(16), 1362-1374. Bloomfield, R., Maureen, O., & Saar, G. (2009). How noise trading affects markets: An experimental analysis. The Review of Financial Studies, 22(6), 2275-2302. https://doi.org/10.1093/rfs/hhn102 CR - Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 36, 307-327, https://doi.org/10.1016/0304-4076(86)90063-1 CR - Brown, G. W., & Cliff, M. T. (2004). Investor sentiment and the near-term stock market. Journal of Empirical Finance, 11, 1-27, https://doi.org/10.1016/j.jempfin.2002.12.001 CR - Campbell, J. Y., &Kyle, A. S. (1993). Smart money, noise trading and stock price behaviour. The Review of Economic Studies, 60, 1–34. CR - Chen, A. L., Chen, H., & Shun, W. C. (2002). The underpricing and excess returns of initial public offerings based on the noisy trading: A stochastic frontier model. Review of Quantitative Finance and Accounting, 18, 139-159. https://doi.org/10.1023/A:1014565018160 CR - Chung, S. L., Hung, C. H., & Yeh, C. Y. (2012). When does investor sentiment predict stock return. Journal of Empirical Finance, 19, 217-240. https://doi.org/10.1016/j.jempfin.2012.01.002 CR - Cuong, P. K., Bich, N. T. T., Thanh, C. B., & Quynh, C. V. T. (2019). Noise trader risk: Evidence from Vietnam stock market. Hue University of Journal Finance, 28, 5-16. https://doi.org/10.26459/hueuni-jed.v128i5C.5083 CR - De Long, B., Andrei, S., Lawrence S., & Robert, W. (1990). Noise trader risk in financial markets. Journal of Political Economy, 98(4), 703-738. https://doi.org/10.1086/261703 CR - De Long, B. (2005). Financial markets, noise traders, and fundamental risk: Background memo. UC Berkeley and NBER Working Paper, 1-27. CR - Derren, F. (2005). IPO pricing in ‘hot’ market conditions: Who leaves money on the table. The Journal of Finance, 60 (1), 487-521. https://doi.org/10.1111/j.1540-6261.2005.00736.x CR - Ding, D. (2011). Modeling of market volatility with APARCH model. Uppsala Universitet U.U.D.M. Project Report, 1-50. CR - Engle, R. (1982). Autorregressive conditional heteroskedasticity with estimates of United Kingdom inflation. Econometrica, 50, 987-1008. https://doi.org/10.2307/1912773 CR - Enders, W. (2015). Applied Econometric Time Series, 4.Baskı, USA, Wiley&Sons. CR - Ergün, T., Yusuf,G., & Bünyamin, E. (2017). Halka arz olan firmaların hisse senedi fiyatlarının belirlenmesinde kullanılan yöntemlerin karşılaştırmalı analizi. Uluslararası İktisadi ve İdari İncelemeler Dergisi, 18, 157-166. https://dergipark.org.tr/tr/pub/ulikidince/issue/26590/279895 CR - Fama, E. (1965). Behavior of stock market prices. Journal of Business, 38(1), 34-105. https://www.jstor.org/stable/2350752 CR - Fama, E. (1970). Efficient capital markets: A review of theory and empirical work. Journal of Finance, 25(2), 383-417. https://doi.org/10.2307/2325486 CR - Feng, J., Lin, D., & Yan, X. (2014). Research on measure of noise trading in stock market based on EGARCH-M model. 2nd International Conference on Information, Electronics and Computer, 101-107. https://doi.org/10.2991/icieac-14.2014.23 CR - Frazzini, A., & Lamont, O. (2005). Dumb money: Mutual fund flows and the cross-section of stock returns. NBER Working Paper. CR - Friedman, M. (1953). Essays in Positive Economics. University of Chicago Press, 1.Basım. CR - Hepsağ, A. (2013). Çok değişkenli stokastik oynaklık modelleri: Petrol piyasası ile finansal piyasalarda işlem gören sanayi sektörü endeksi arasındaki oynaklık etkileşimi üzerinde bir uygulama, Doktora Tezi, T.C İstanbul Üniversitesi sosyal Bilimler Enstitüsü, 1-230. CR - Ju, X.K. (2014). Comparison and analysis of CAPM and BAPM models, International Conference of Mechatronics, Electronics, Industrial and Control Engineer, 62-65. https://doi.org/10.2991/meic-14.2014.15 CR - Kumar, A., & Lee, C. (2006). Retail investor sentiment and return comovements. Journal of Finance, 61(5), 2451-2486. https://doi.org/10.1111/j.1540-6261.2006.01063.x CR - Laopodis, N. (2008). Noise trading and autocorrelation interactions in the foreign exchange market: Evidence from developed and emerging economies. Journal of Economics and Finance, 32(3), 271-293. https://doi.org/10.1007/s12197-007-9018-y CR - Mazıbaş, M. (2005). İMKB piyasalarındaki volatilitenin modellenmesi ve öngörülmesi: Asimetrik GARCH modelleri ile bir uygulama. VII. Ekonometri ve İstatistik Sempozyumu, 1-29. http://dx.doi.org/10.2139/ssrn.3008971 CR - Nofsinger, J. R., & Sias, R. W. (1999). Herding and feedback trading by ınstitutional and ındividual ınvestors. The Journal of Finance, 54(6), 2263-2295. https://doi.org/10.1111/0022-1082.00188 UR - https://doi.org/10.17065/huniibf.1004363 L1 - https://dergipark.org.tr/en/download/article-file/2008480 ER -