TY - JOUR T1 - Quantum analog of some trapezoid and midpoint type inequalities for convex functions AU - Kunt, Mehmet AU - Baidar, Abdul PY - 2022 DA - June Y2 - 2021 DO - 10.31801/cfsuasmas.1009988 JF - Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics JO - Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. PB - Ankara University WT - DergiPark SN - 1303-5991 SP - 456 EP - 480 VL - 71 IS - 2 LA - en AB - In this paper a new quantum analog of Hermite-Hadamard inequality is presented, and based on it, two new quantum trapezoid and midpoint identities are obtained. Moreover, the quantum analog of some trapezoid and midpoint type inequalities are established. KW - Trapezoid inequality KW - convex function KW - q-Integral KW - midpoint inequality CR - Ali, M. A., Abbas, M., Budak, H., Agarwal, P., Murtaza, G., Chu, Y. M., New quantum boundaries for quantum Simpson’s and quantum Newton’s type inequalities for preinvex functions, Adv. Differ. Equ., 2021(64) (2021), 1-21. https://doi.org/10.1186/s13662-021-03226-x CR - Ali, M. A., Alp, N., Budak, H., Chu, Y. M., Zhang, Z., On some new quantum midpoint-type inequalities for twice quantum differentiable convex functions, Open Math., 19(1) (2021), 427-439. https://doi.org/10.1515/math-2021-0015 CR - Ali, M. A., Budak, H., Abbas, M., Chu, Y. M., Quantum Hermite-Hadamard-type inequalities for functions with convex absolute values of second qb-derivatives, Adv. Differ. Equ., 2021(7) (2021), 1-12. https://doi.org/10.1186/s13662-020-03163-1 CR - Ali, M. A., Budak, H., Akkurt, A., Chu, Y. M., Quantum Ostrowski-type inequalities for twice quantum differentiable functions in quantum calculus, Open Math., 19(1) (2021), 440-449. https://doi.org/10.1515/math-2021-0020 CR - Ali, M. A., Budak, H., Zhang, Z., Yildirim, H., Some new Simpson’s type inequalities for coordinated convex functions in quantum calculus, Math. Methods Appl. Sci., 44(6) (2021), 4515-4540. https://doi.org/10.1002/mma.7048 CR - Ali, M. A., Chu, Y. M., Budak, H., Akkurt, A., Yildirim, H., Zahid, M. A., Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables, Adv. Differ. Equ., 2021(25) (2021), 1-26. https://doi.org/10.1186/s13662-020-03195-7 CR - Annaby, M. H., Mansour, Z. S., q-Fractional Calculus and Equations, Springer, Heidelberg, 2012. CR - Alp, N., Sarikaya, M. Z., Kunt, M., Iscan, I., q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ.-Sci., 30(2) (2018), 193-203. https://doi.org/10.1016/j.jksus.2016.09.007 CR - Awan, M. U., Talib, S., Kashuri, A., Noor, M. A., Chu, Y. M., Estimates of quantum bounds pertaining to new q-integral identity with applications, Adv. Differ. Equ., 2020(424) (2020), 1-15. https://doi.org/10.1186/s13662-020-02878-5 CR - Awan, M. U., Talib, S., Kashuri, A., Noor, M. A., Noor, K. I., Chu, Y. M., A new q-integral identity and estimation of its bounds involving generalized exponentially μ-preinvex functions, Adv. Differ. Equ., 2020(575) (2020), 1-12. https://doi.org/10.1186/s13662-020-03036-7 CR - Awan, M. U., Talib, S., Noor, M. A., Noor, K. I., Chu, Y. M, On post quantum integral inequalities, J. Math. Inequal., 15(2) (2021), 629-654. https://doi.org/10.7153/jmi-2021-15- 46 CR - Budak, H., Ali, M. A., Tarhanaci, M., Some new quantum Hermite–Hadamard-like inequalities for coordinated convex functions, J. Optim. Theory. Appl., 186(3) (2020), 899-910. https://doi.org/10.1007/s10957-020-01726-6 CR - Budak, H., Ali, M. A., Tunc, T., Quantum Ostrowski-type integral inequalities for functions of two variables, Math. Methods Appl. Sci., 44(7) (2021), 5857-5872. https://doi.org/10.1002/mma.7153 CR - Budak, H., Erden, S., Ali, M. A., Simpson and Newton type inequalities for convex functions via newly defined quantum integrals, Math. Methods Appl. Sci., 44(1) (2021), 378-390. https://doi.org/10.1002/mma.6742 CR - Budak, H., Khan, S., Ali, M. A., Chu, Y. M., Refinements of quantum Hermite-Hadamardtype inequalities, Open Math., 19(1) (2021), 724-734. https://doi.org/10.1515/math-2021-0029 CR - Dragomir, S. S., Agarwal, R., Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11(5) (1998), 91-95. https://doi.org/10.1016/S0893-9659(98)00086-X CR - Du, T. S., Luo, C. Y., Yu, B., Certain quantum estimates on the parameterized integral inequalities and their applications, J. Math. Inequal., 15(1) (2021), 201-228. https://doi.org/10.7153/jmi-2021-15-16 CR - Eftekhari, N., Some remarks on (s, m)-convexity in the second sense, J. Math. Inequal., 8(3) (2014), 489-495. https://doi.org/10.7153/jmi-08-36 CR - Erden, S., Iftikhar, S., Delavar, M. R., Kumam, P., Thounthong, P., Kumam, W., On generalizations of some inequalities for convex functions via quantum integrals, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 114(110) (2020), 1-15. https://doi.org/10.1007/s13398-020-00841-3 CR - Kac, V., Pokman C., Quantum Calculus, Springer, New York, 2001. CR - Kavurmaci, H., Avci, M., Ozdemir, M. E., New inequalities of Hermite-Hadamard type for convex functions with applications, J. Inequal.Appl., 2011(86) (2011), 1-11. https://doi.org/10.1186/1029-242X-2011-86 CR - Kirmaci, U. S., Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 147(1) (2004), 137-146. https://doi.org/10.1016/S0096-3003(02)00657-4 CR - Kunt, M., Baidar, A., Sanli, Z., Left-Right quantum derivatives and definite integrals, (2020), https://www.researchgate.net/publication/343213377 (Preprint). CR - Li, Y. X., Ali, M. A., Budak, H., Abbas, M., Chu, Y. M., A new generalization of some quantum integral inequalities for quantum differentiable convex functions, Adv. Differ. Equ., 2021(225) (2021), 1-15. https://doi.org/10.1186/s13662-021-03382-0 CR - Khan, M. A., Mohammad, N., Nwaeze, E. R., Chu, Y. M., Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Differ. Equ., 2020(99) (2020), 1-20. https://doi.org/10.1186/s13662-020-02559-3 CR - Noor, M. A., Noor, K. I., Awan, M. U., Some quantum estimates for Hermite–Hadamard inequalities, Appl. Math. Comput., 251 (2015), 675-679. https://doi.org/10.1016/j.amc.2014.11.090 CR - Prabseang, J., Nonlaopon, K., Ntouyas, S. K., On the refinement of quantum Hermite-Hadamard inequalities for continuous convex functions, J. Math. Inequal., 14(3) (2020), 875-885. https://doi.org/10.7153/jmi-2020-14-57 CR - Pearce, C. E. M., Pecaric, J., Inequalities for differentiable mappings with application to special means and quadrature formulae, Appl. Math. Lett., 13(2) (2000), 51-55. https://doi.org/10.1016/S0893-9659(99)00164-0 CR - Rashid, S., Butt, S. I., Kanwal, S., Ahmad, H., Wang, M. K., Quantum integral inequalities with respect to Raina’s function via coordinated generalized-convex functions with applications, J. Funct. Spaces, Article ID 6631474 (2021). https://doi.org/10.1155/2021/6631474 CR - Sudsutad, W., Ntouyas, S. K., Tariboon, J., Quantum integral inequalities for convex functions, J. Math. Inequal., 9(3) (2015), 781-793. https://doi.org/10.7153/jmi-09-64 CR - Tariboon, J., Ntouyas, S. K., Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equ., 2013(282) (2013), 1-19. https://doi.org/10.1186/1687-1847-2013-282 CR - Vivas-Cortez, M., Ali, M. A., Kashuri, A., Sial, B. I., Zhang, Z., Some new Newton’s type integral inequalities for co-ordinated convex functions in quantum calculus, Symmetry, 12(9) (2020), 1-28. https://doi.org/10.3390/sym12091476 CR - Vivas-Cortez, M., Kashuri, A., Liko, R., Hern´andez, J. E. H., Some new q-integral inequalities using generalized quantum Montgomery identity via preinvex functions, Symmetry, 12(4) (2020), 1-15. https://doi.org/10.3390/sym12040553 CR - You, X., Ali, M. A., Erden, S., Budak, H., Chu, Y. M., On some new midpoint inequalities for the functions of two variables via quantum calculus, J. Inequal. Appl., 2021(142) (2021), 1-23. https://doi.org/10.1186/s13660-021-02678-9 CR - You, X., Kara, H., Budak, H., Kalsoom, H., Quantum inequalities of Hermite–Hadamard type for-convex functions, J. Math., Article ID 6634614 (2021). https://doi.org/10.1155/2021/6634614 CR - Zhou, S. S., Rashid, S., Noor, M. A., Noor, K. I., Safdar, F., Chu, Y. M., New Hermite-Hadamard type inequalities for exponentially convex functions and applications, AIMS Math., 5(6) (2020), 6874-6901. https://doi.org/10.3934/math.2020441 UR - https://doi.org/10.31801/cfsuasmas.1009988 L1 - https://dergipark.org.tr/en/download/article-file/2028034 ER -