TY - JOUR T1 - On the zeros of R-Bonacci polynomials and their derivatives AU - Özgür, Nihal AU - Öztunç Kaymak, Öznur PY - 2022 DA - December Y2 - 2022 DO - 10.31801/cfsuasmas.1037229 JF - Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics JO - Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. PB - Ankara University WT - DergiPark SN - 1303-5991 SP - 978 EP - 992 VL - 71 IS - 4 LA - en AB - The purpose of the present paper is to examine the zeros of R-Bonacci polynomials and their derivatives. We obtain new characterizations for thezeros of these polynomials. Our results generalize the ones obtained for the special case r=2. Furthermore, we find explicit formulas of the roots ofderivatives of R-Bonacci polynomials in some special cases. Our formulas are substantially simple and useful. KW - $R$-Bonacci polynomial KW - symmetric polynomial KW - complex polynomial KW - complex zeros CR - Brousseau, A., Fibonacci statistics in conifers, Fibonacci Quart., 7(4) (1969), 525–532. CR - Carson, J., Fibonacci numbers and pineapple phyllotaxy, The Two-Year College Mathematics Journal, 9(3) (1978), 132–136. https://doi.org/10.2307/3026682 CR - Falcon, S., Plaza, A., On k-Fibonacci sequences and polynomials and their derivatives, Chaos, Solitons & Fractals, 30(3) (2009), 1005-1019. https://doi.org/10.1016/j.chaos.2007.03.007 CR - Filipponi, P., Horadam, A. F., Derivative Sequences of Fibonacci and Lucas Polynomials, Applications of Fibonacci Numbers, Vol. 4 (Winston-Salem, NC, 1990), 99–108, Kluwer Acad. Publ., Dordrecht, 1991. CR - Filipponi, P., Horadam, A., Second derivative sequences of Fibonacci and Lucas polynomials, Fibonacci Quart., 31(3) (1993), 194–204. CR - Goh, W., He, M. X., Ricci, P. E., On the universal zero attractor of the Tribonacci-related polynomials, Calcolo, 46(2) (2009), 95–129. https://doi.org/10.1007/s10092-009-0002-0 CR - He, M. X., Simon, D., Ricci, P. E., Dynamics of the zeros of Fibonacci polynomials, Fibonacci Quart., 35(2) (1997), 160–168. CR - He, M. X., Ricci, P. E., Simon, D., Numerical results on the zeros of generalized Fibonacci polynomials, Calcolo, 34 (1-4) (1997), 25–40. CR - Hoggatt, V. E., Bicknell, M., Generalized Fibonacci polynomials, Fibonacci Quart., 11(5) (1973), 457–465. CR - Hoggatt, V. E., Bicknell, M., Roots of Fibonacci polynomials, Fibonacci Quart., 11(3) (1973), 271–274. CR - Öztunç Kaymak, Ö., R-Bonacci polynomials and Their Derivatives, Ph. D. Thesis, Balıkesir University, 2014. CR - Öztunç Kaymak, Ö., Some remarks on the zeros of tribonacci polynomials, Int. J. Anal. Appl., 16(3) (2018), 368-373. https://doi.org/10.28924/2291-8639-16-2018-368 CR - Koshy, T., Fibonacci and Lucas Numbers with Applications, Pure and Applied Mathematics, Wiley-Interscience, New York, 2001. CR - Marden, M., Geometry of Polynomials, Second edition, Mathematical Surveys, No. 3 American Mathematical Society, Providence, R.I. 1966. Matyas, F., Szalay, L., A note on Tribonacci coefficient polynomials, Ann. Math. Inform. 38 (2011), 95–98. CR - Matyas, F., Szalay, L., A note on Tribonacci-coefficient polynomials, Ann. Math. Inform. 38 (2011), 95–98. CR - Mitchson, G. J., Phyllotaxis and the Fibonacci series, Science, 196 (1977), 270–275. CR - Özgür, N. Y., Öztunç Kaymak, Ö., On the zeros of the derivatives of Fibonacci and Lucas polynomials, Journal of New Theory, 7 (2015), 22-28. CR - Taş, N., Uçar, S., Özgür, N., Öztunç Kaymak, Ö., A new coding/decoding algorithm using Finonacci numbers, Discrete Math. Algorithms Appl., 10(2) (2018), 1850028. https://doi.org/10.1142/S1793830918500283 CR - Taş, N., Uçar, S., Özgür, N., Pell coding and Pell decoding methods with some applications, Contrib. Discrete Math. 15(1) (2020), 52-66. https://doi.org/10.11575/cdm.v15i1.62606 CR - Uçar, S., Taş, N., Özgür, N. Y., A new application to coding theory via Fibonacci and Lucas numbers, Mathematical Sciences and Applications E-Notes, 7(1) (2019), 62–70. CR - Vieira, R. S., Polynomials with Symmetric Zeros, In: Polynomials – Theory and Application, IntechOpen, 2019. https://doi.org/10.5772/intechopen.82728 CR - Vieira, R. S., How to count the number of zeros that a polynomial has on the unit circle?, J Comp. Appl. Math., 384 (2021), Paper No. 113169, 11 pp. https://doi.org/10.1016/j.cam.2020.113169 CR - Wang, J., On the k-th derivative sequences of Fibonacci and Lucas polynomials, Fibonacci Quart., 33(2) (1995), 174–178. CR - Web, W. A., Parberry, E. A., Divisibility properties of Fibonacci polynomials, Fibonacci Quart., 7(5) (1969), 457–463. CR - Yuan, Y., Zhang, W., Some identities involving the Fibonacci polynomials, Fibonacci Quart., 40(4) (2002), 314–318. UR - https://doi.org/10.31801/cfsuasmas.1037229 L1 - https://dergipark.org.tr/en/download/article-file/2134642 ER -