TY - JOUR T1 - Implementation of a Lightweight and Portable Horn Antenna Using 3-D Printing Technology TT - 3-Boyutlu Baskı Tekniği ile Hafif ve Portatif Bir Horn Anten Gerçekleştirilmesi AU - Yamaçlı, Serhan PY - 2022 DA - September DO - 10.28979/jarnas.1039348 JF - Journal of Advanced Research in Natural and Applied Sciences JO - JARNAS PB - Çanakkale Onsekiz Mart University WT - DergiPark SN - 2757-5195 SP - 370 EP - 379 VL - 8 IS - 3 LA - en AB - In this study, a horn antenna operating at 5.8GHz centre frequency, which is an ISM operating frequency, is de-signed and manufactured. The novelty of the antenna is that it is produced using a 3D printer with a conductive filament containing carbon nanotube particles. The geometric dimensions of the antenna were calculated by means of an antenna design software. Then, the size of the radiating element of the antenna was optimized to set the centre frequency to 5.8GHz. It has been verified by electromagnetic simulations that the designed antenna exhibits this centre frequency. Then, the designed antenna geometry was sketched in a 3-dimensional drawing program and made ready for printing. This antenna was fabricated on an Ultimaker 3D printer with a PLA fila-ment containing conductive carbon nanotubes. The radiation element of the antenna and the SMA connector were finally attached to the printed antenna. The frequency response of the antenna is then measured using a vector network analyser and it has been shown that the produced pyramidal horn antenna works in the desired frequency band. The printed antenna has the desired frequency characteristic without the need for any additional coating or conductive spray thanks to the PLA filament containing conductive carbon nanotubes. The produced antenna has a weight of only 64.53 grams, including the SMA connector and the radiation element. The proposed lightweight and practical horn antenna design concept may have important applications considering the advances and needs of mobile defence and telecommunication systems. KW - Horn antenna KW - conductive filament KW - electromagnetic simulation KW - antenna design. KW - 3D printing N2 - Bu çalışmada, ISM uygulamalarında kullanılabilen frekanslardan biri olan 5.8GHz merkez frekansına sahip bir horn anten tasarımı ve gerçekleştirilmesi yapılmıştır. Literatürdeki ve piyasadaki mevcut çalışmalara getirilen yenilik ise, tasarlanan ve benzetime tabi tutulan horn anten geometrisinin 3-boyutlu baskı tekniği ile içerisinde karbon nanotüp parçacıklar bulunan iletken filament kullanılarak gerçekleştirilmiş olmasıdır. Bu sayede, standart metalik muadil antenlere nazaran çok daha hafif bir anten elde edilmiştir. Ayrıca, metalik gövdeli antenlere göre 3-boyutlu baskı tekniği ile daha hızlı ve pratik bir şekilde üretilmiştir. Planlanan antenin geometrik ölçüleri öncelikle bir yazılım vasıtasıyla tasarlanmıştır. Daha sonra ise 5.8GHz merkez frekansını sağlayacak şekilde antenin ışıma elemanının boyutu optimize edilmiştir. Tasarlanan antenin bu merkez frekansını sağladığı elektromanyetik benzetimler yoluyla doğrulanmıştır. Daha sonra ise tasarlanan anten geometrisi 3-boyutlu çizim programı ile çizilerek baskıya hazır hale getirilmiştir. Bu anten, iletken karbon nanotüp içeren PLA filamenti ile Ultimaker baskı makinesinde üretilmiştir. Antenin ışıma elemanı ile SMA konnektörü ise bir sonraki adımda takılmış ve anten hazır hale getirilmiştir. Üretilen piramidal horn antenin istenilen frekans bandında çalıştığı vektör devre analizörü ile yapılan ölçümler neticesinde gösterilmiştir. Baskı alınan anten, herhangi bir ek kaplama veya iletken spreye gerek duymadan, karbon nanotüp içeren PLA filament sayesinde istenilen frekans karakteristiğini göstermiştir. Üretilen anten, PLA filament sayesinde SMA konnektör ve ışıma elemanı dahil olmak üzere sadece 64.53 gram ağırlığına sahiptir. Özellikle hafif ve mobil savunma ve haberleşme teknolojilerindeki gelişmeler ve ihtiyaçlar göz önünde bulundurulduğunda, 3-boyutlu olarak üretilen bu tip hafif antenlerin geniş bir kullanım potansiyelinin olabileceği değerlendirilmiştir. CR - Balanis C.A. (2016). Antenna Theory: Analysis and Design. Wiley, USA. ISBN: 978-1-118-64206-1. CR - Bor-Yaliniz I, Szyszkowicz S, ve Yanikomeroglu H. (2018). Environment-aware drone-base-station place-ments in modern metropolitans. IEEE Wireless Communication Letters, 7: 372–375. Retrieved from: https://doi.org/10.1109/LWC.2017.2778242 CR - Chuma E.L., Iano Y., Roger L.L.B., Scroccaro M., Frazatto F., ve Manera L.T. (2019). Performance anal-ysis of X band horn antennas using additive manufacturing method coated with different techniques. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 18: 263–269. Retrieved from: https://doi.org/10.1590/2179-10742019v18i21337 CR - Esfahani M.R.N., Shuttleworth M.P., Harris R.A., Kay R.W., Doychinov V., Robertson I.D., Marques-Hueso J., Jones T.D.A., Ryspayeva A., ve Desmulliex M.P.Y.. (2018). Hybrid additive manufacture of conformal antennas. Proc. of IEEE MTT-S International Microwave Workshop Series on Advanced Ma-terials and Processes for RF and THz Applications, 17–19. Retrieved from: https://doi.org/10.1109/IMWS-AMP.2018.8457128 CR - ETS-Lindgren Standard Antenna Datasheet. Retrieved from: www.ets-lindgren.com. Accessed: 04.02.2021. CR - FreeCad 3D Parametric Modeller. Retrieved from: www.freecadweb.org. Accessed: 14.03.2021. CR - Functionalize F-Electric PLA. Retrieved from: www.functionalize.com/about/functionalize-f-electric-highly-conductive-filament. Accessed: 04.02.2021. CR - Genç A. (2019). Gain increase of horn antenna with waveguide feeding network by using 3D printing technology. Bayburt Üniversitesi Fen Bilimleri Dergisi, 2: 18–25. Retrieved from: https://dergipark.org.tr/en/pub/bufbd/issue/46478/534593 CR - Genç A., Başyiğit İ., Göksu T., ve Helhel S. (2017). Investigation of the performances of X-Ku band 3D printing pyramidal horn antennas coated with the different metals. Proc. of 10th International Confer-ence on Electrical and Electronics Engineering (ELECO), 1012–1016. Retrieved from: https://ieeexplore.ieee.org/document/8266200 CR - Gu C., Gao S., Fusco V., Gibbons G., Sanz-Izqueirdo B., Standaert A., Raynaert P., Bosch W., Gadringer M., Xu R., ve Yang X. (2020). A D-band 3D printed antenna. IEEE Transactions on Terahertz Science and Technology; 10: 433–442. Retrieved from: https://doi.org/10.1109/TTHZ.2020.2986650 CR - Hu K., Duan Y., Zhang H., Liu D., Yan B., ve Peng F. (2018). Manufacturing and 3D printing of continu-ous carbon fiber prepreg filament. Composites; 53: 1887–1898. Retrieved from: https://doi.org/10.1007/s10853-017-1624-2 CR - Hui K-P., Philips D., ve Kekirigoda A. (2017). Beyond line-of-sight range extension with OPAL using autonomous un-manned aerial vehicles. Proc. of IEEE Military Communications Conference, 279–284. Retrieved from: https://doi.org/10.1109/MILCOM.2017.8170774 CR - Kiesel G., Bowden P., Cook K., Habib M., Marsh J., Reid D., Phillips C., ve Baker B.(2020). Practical 3D printing of antennas and RF electronics. Aerospace and Defense Technology, 403–406. Retrieved from: https://apps.dtic.mil/sti/pdfs/AD1041830.pdf CR - Kwon O., Park W.B., Lee S., Lee J.M., ve Park Y.M., Hwang K.C. (2017). 3D-printed super-wideband spidron fractal cube antenna with laminated copper. Applied Sciences 2017; 7: 979–988. Retrieved from: https://doi.org/10.3390/app7100979 CR - Kyovtorov V., Georgiev I., Margenov S., Stoychev D., Oliveri F., ve Tarchi D. (2017). New antenna design approach–3D polymer printing and metallization experimental test at 14–18 GHz. AEU International Journal of Electronics and Communications 2017; 73: 119–128. Retrieved from: https://doi.org/10.1016/j.aeue.2016.12.017 CR - Lee S., Yang Y., Lee K-Y., Jung K-Y., Hwang K.C. (2018). Robust design of 3D-printed 6–18 GHz double-ridged TEM horn antenna. Applied Sciences, 8: 1582–1592. Retrieved from: https://doi.org/10.3390/app8091582 CR - Matthew E., Pitzanti G., Larraneta E., ve Lamprou D.A. (2020). 3D printing of pharmaceuticals and drug delivery devices. Pharmaceutics; 12: 266–275. Retrieved from: https://dx.doi.org/10.3390%2Fpharmaceutics12030266 CR - Mazar H. (2014). International, regional and national regulation of SRDs. Proc. of ITU Workshop on Short Range Devices and Ultra Wide Band, 27–32. Retrieved from: https://www.itu.int/en/ITU-R/study-groups/workshops/RWP1B-SRD-UWB-14/Presentations/International,%20regional%20and%20national%20regulation%20of%20SRDs.pdf CR - Midtboen V., Kjelgard K.G., ve Lande T.S. (2017). 3D printed horn antenna with PCB microstrip feed for UWB radar applications. Proc. of IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP). Retrieved from: https://doi.org/10.1109/IMWS-AMP.2017.8247374 CR - Mishra A., ve Li C. (2019). A Low Power 5.8-GHz ISM-band intermodulation radar system for target mo-tion discrimination. IEEE Sensors Journal, 19: 9206–9214. Retrieved from: https://doi.org/10.1109/JSEN.2019.2926189 NS-MI Standard Gain Horns. Retrieved from: www.ns-mi.com. Accessed: 04.02.2021. CR - Pasternack Standard Gain Horn Antennas. Retrieved from: www.pasternack.com/antennas-category.aspx. Accessed: 04.02.2021. CR - Phillips B.T., Allder J., Bloan G., Nagle R.S., Redington A., Hellebrekers T., Borden J., Pawlenko N., ve Licht S. (2020). Additive manufacturing aboard a moving vessel at sea using passively stabilized ste-reolithography (SLA) 3D printing. Additive Manufacturing; 31: 100969. Retrieved from: https://doi.org/10.1016/j.addma.2019.100969 CR - Shahrubudin N., Lee T., ve Ramlan R. (2019). An overview on 3D printing technology: technological, materials and applications. Procedia Manufacturing; 35: 1286–296. Retrieved from: https://doi.org/10.1016/j.promfg.2019.06.089 CR - So K., Luk K., Chan C.H., Chan K.F. (2018). 3D printed high gain complementary dipole/slot antenna array. Applied Sciences, 8: 1410–1417. Retrieved from: https://doi.org/10.3390/app8081410 CR - Tak J., Kang D-G., ve Choi J. (2017). A lightweight waveguide horn antenna made via 3d printing and conductive spray coating. Microwave and Optical Technology Letters; 59: 727–729. Retrieved from: https://doi.org/10.1002/mop.30374 CR - Wang K., Ho C., Zhang C., ve Wang B. (2017). A Review on the 3D printing of functional structures for medical phantoms and regenerated tissue and organ applications. Engineering 3: 653–662. Retrieved from: https://doi.org/10.1016/J.ENG.2017.05.013 CR - Yao H., Sharma S., Henderson R., Ashrafi S., ve MacFarlane D.. (2017). Ka band 3D printed horn anten-nas. Proc of Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS): 1–4. Re-trieved from: https://doi.org/10.1109/WMCaS.2017.8070701 CR - Zhang B., Chen W., Wu Y., Ding K., ve Li R. (2017). Review of 3D printed millimeter-wave and terahertz passive devices. International Journal of Antennas and Propagation, 1297931. Retrieved from: https://doi.org/10.1155/2017/1297931 CR - Zhang B., Guo Y-X., Sun H., Wu Y. (2018). Metallic, 3D-printed, K-band-stepped,double-ridged square horn antennas. Applied Sciences 2018; 8: 33–40. Retrieved from: https://doi.org/10.3390/app8010033 UR - https://doi.org/10.28979/jarnas.1039348 L1 - https://dergipark.org.tr/en/download/article-file/2143296 ER -