TY - JOUR T1 - Connected Square Network Graphs AU - Selçuk, Burhan PY - 2022 DA - June Y2 - 2022 DO - 10.32323/ujma.1058116 JF - Universal Journal of Mathematics and Applications JO - Univ. J. Math. Appl. PB - Emrah Evren KARA WT - DergiPark SN - 2619-9653 SP - 57 EP - 63 VL - 5 IS - 2 LA - en AB - In this study, connected square network graphs are introduced and two different definitions are given. Firstly, connected square network graphs are shown to be a Hamilton graph. Further, the labelling algorithm of this graph is obtained by using gray code. Finally, its topological properties are obtained, and conclusion are given. KW - Hamilton Graph KW - Interconnection Network KW - Graphical indices CR - [1] A. El-Amawy, S. Latifi, Properties and performance of folded hypercubes, IEEE Trans. Parallel Distrib. Syst., 2(1) (1991), 31-42. CR - [2] H. Y. Chang, R. J. Chen, Incrementally extensible folded hypercube graphs, J. Inf. Sci. Eng., 16(2), (2000), 291-300. CR - [3] Q. Dong, X. Yang, J. Zhao, Y. Y. Tang, Embedding a family of disjoint 3D meshes into a crossed cube, Inf. Sci. 178 (2008), 2396-2405. CR - [4] K. Efe, The crossed cube architecture for parallel computation, IEEE Trans. Parallel Distrib. Syst., 40 (1991), 1312-1316. CR - [5] C. J. Lai, C. H. Tsai, H. C. Hsu, T. K. Li, A dynamic programming algorithm for simulation of a multi-dimensional torus in a crossed cube, Inf. Sci., 180 (2010), 5090-5100. CR - [6] M. Abd-El-Barr, T. F. Soman, Topological properties of hierarchical interconnection networks a review and comparison, J. Electr. Comput. Eng., (2011). CR - [7] K. Chose, K. R. Desai, Hierarchical cubic networks, IEEE Trans. Parallel Distrib. Syst., 6 (1995), 427-435. CR - [8] A. Karci, Hierarchical extended Fibonacci cubes, Iran. J. Sci. Technol. Trans. B Eng., 29 (2005), 117-125. CR - [9] A. Karci, Hierarchic graphs based on the Fibonacci numbers, Istanbul Univ. J. Electr. Electron. Eng., 7(1) (2007), 345-365. CR - [10] A. Karcı, B. Selc¸uk, A new hypercube variant: Fractal Cubic Network Graph, Eng. Sci. Technol. an Int. J., 18(1) (2014), 32-41. CR - [11] B. Selc¸uk, A. Karcı, Connected cubic network graph, Eng. Sci. Technol. an Int. J., 20(3) (2017), 934-943. CR - [12] E. D. Knuth, Generating all n-tuples, The Art of Computer Programming, Volume 4A: Enumeration and Backtracking, Pre-Fascicle 2a, 2004. CR - [13] G. Caporossi, I. Gutman, P. Hansen, L. Pavlovi´c, Graphs with maximum connectivity index, Comput. Biol. Chem., 27(1) (2003), 85-90. UR - https://doi.org/10.32323/ujma.1058116 L1 - https://dergipark.org.tr/en/download/article-file/2193197 ER -