TY - JOUR T1 - On a property of the ideals of the polynomial ring $R[x]$ AU - Al-maktry, Amr Ali Abdulkader PY - 2022 DA - January DO - 10.24330/ieja.1058380 JF - International Electronic Journal of Algebra JO - IEJA PB - Abdullah HARMANCI WT - DergiPark SN - 1306-6048 SP - 1 EP - 12 VL - 31 IS - 31 LA - en AB - Let RR be a commutative ring with unity 1≠01≠0. In this paper we introduce the definition of the first derivative property on the ideals of the polynomial ring R[x]R[x]. In particular, when RR is a finite local ring with principal maximal ideal m≠{0}m≠{0} of index of nilpotency ee, where 1<e≤|R/m|+11≤e≤|R/m|+1, we show that the null ideal consisting of polynomials inducing the zero function on RR satisfies this property. As an application, when RR is a finite local ring with null ideal satisfying this property, we prove that the stabilizer group of RR in the group of polynomial permutations on the ring R[x]/(x2)R[x]/(x2), is isomorphic to a certain factor group of the null ideal. KW - Commutative rings KW - polynomial ring KW - null ideal KW - null polynomial KW - Henselian ring KW - finite local ring KW - dual numbers KW - polynomial permutation KW - permutation polynomial KW - finite permutation group CR - H. Al-Ezeh, A. A. Al-Maktry and S. Frisch, Polynomial functions on rings of dual numbers over residue class rings of the integers, Math. Slovaca, 71(5) (2021), 1063-1088. CR - B. R. McDonald, Finite rings with identity, Pure and Applied Mathematics, Vol. 28, Marcel Dekker, Inc., New York, 1974. CR - A. A. Necaev, Polynomial transformations of finite commutative local rings of principal ideals, Math. Notes, 27(5-6) (1980), 425-432. translate from Mat. Zametki, 27(6) (1980), 885-897. CR - W. Nobauer, Uber die Ableitungen der Vollideale, Math. Z., 75 (1961), 14-21. CR - M. W. Rogers and C. Wickham, Polynomials inducing the zero function on local rings, Int. Electron. J. Algebra, 22 (2017), 170-186. UR - https://doi.org/10.24330/ieja.1058380 L1 - https://dergipark.org.tr/en/download/article-file/2194334 ER -