TY - JOUR T1 - Biyomedikal uygulamaları için vücut içi geniş bantlı İD-EDDK beslemeli SBT bant anten analizi TT - In-body Wideband CB-CPW Fed ISM Band Antenna Analysis for Biomedical Applications AU - Habergoturen Ates, Seda AU - Okan, Tayfun AU - Akçam, Nursel PY - 2022 DA - July Y2 - 2022 DO - 10.28948/ngumuh.1059091 JF - Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi JO - NÖHÜ Müh. Bilim. Derg. PB - Nigde Omer Halisdemir University WT - DergiPark SN - 2564-6605 SP - 567 EP - 573 VL - 11 IS - 3 LA - tr AB - Bu çalışmada biyomedikal uygulamalarında kullanılmak üzere SBT (Sınai Bilimsel ve Tıbbi cihaz bandı) bantta çalışan geniş bantlı bir anten tasarlanmıştır. Antenin maksimum boyutlarını gösteren 11 x 12 x 0.6 mm³ değerleri için Rogers-RO3210 (ε_r = 10.2) alltaş olarak belirlenmiştir. Bu alttaşın üzerine geleneksel dikdörtgen yama anten tasarlanıp içerisinden testere şeklinde bir yarık kazınmıştır. Tasarlanan antenin besleme tipi İD-EDDK (İletken Destekli Eş Düzlemsel Dalga Kılavuzu) olarak seçilmiş, toprak plakası azaltılarak kullanılmıştır. Antenin tasarımı ve analizleri CST-MWS programı kullanılarak yapılmıştır. Tasarlanan antenin empedans bant genişliği (S_11≤-10 dB) 0.7152 GHz (1.9736-2.6888 GHz) olarak ölçülmüştür. Merkezi rezonans frekansı 2.368 GHz olan antenin yansıma katsayısı grafiği SBT bandını kapsar. Vücut içi uygulamalara uygun olarak tasarlanan antenin eğimli koşullardaki sonuçları da düzlemsel koşullardaki sonuçlarına kıyasla çok yakın performans göstermektedir ve ÖSO değerleri insan vücudu için zararsızdır. KW - Biyomedikal Uygulamaları KW - SBT Bant KW - İD-EDDK N2 - In this study, a wideband antenna operating in the ISM (Industrial Scientific and Medical device) band was designed to be used in biomedical applications. Rogers-RO3210 (ε_r = 10.2) was determined as substrate for 11 x 12 x 0.6 mm³ values which are maximum dimensions of the antenna. A traditional rectangular patch antenna was designed on this substrate, and a saw-shaped etched. The feeding type of the designed antenna was chosen as CB-CPW (Conductor Backed Coplanar Waveguide) and the ground plate reduced. The design and analysis of the antenna were made using the CST-MWS program. The impedance bandwidth (S_11≤-10 dB) of the designed antenna was measured as 0.7152 GHz (1.9736-2.6888 GHz). The reflection coefficient graph of the antenna with a central resonant frequency of 2.368 GHz covers ISM band. The results of the antenna, which was designed for in-body applications, in bent conditions also showed very close performance compared to its results in planar conditions and SAR values were harmless for human body. CR - K. V. Babu, S. Das, S. Lakrit, S. K. Patel, B. T. Madhav and H. Medkour, Compact Dual-Band Printed MIMO Antenna with Very Low Mutual Coupling for WLAN, Wi-MAX, Sub-6 GHz 5G and X-Band Satellite Communication Applications. Progress In Electromag netics Research C, 117, 99-114, 2021. CR - M. Ciydem and E. A. Miran, Dual-polarization wideband sub-6 GHz suspended patch antenna for 5G base station. IEEE Antennas and Wireless Propagation Letters, 19(7), 1142-1146, 2020. https://doi.org/10.11 09/LAWP.2020.2991967 CR - B. Dokmetas, G.O. Arican, N. Akcam and E. Yazgan, A novel millimeter-wave U-shaped radiating slot antenna with DGS structures for 5G cellular application. In 2019 11th International Conference on Electrical and Electronics Engineering (ELECO), pp. 669-672, IEEE, November, 2019. https://doi.org/10.23 919/ELECO47770.2019.8990502 CR - T. Okan, A Wideband Conductor Backed Coplanar Waveguide Fed Implantable Antenna Operable in Different Tissues for Biotelemetry Applications. Radioengineering, 30(2), 2021. https://doi.org/10.1316 4/re.2021.0335 CR - J.Kim and Y. Rahmat-Samii, Implanted antennas inside a human body: Simulations, designs, and characterizations. IEEE Transactions on microwave theory and techniques, 52(8), 1934-1943, 2004. https://doi.org/10.1109/TMTT.2004.832018 CR - M. M. Miran and F. Arifin, Design and performance analysis of a miniaturized implantable PIFA for wireless body area network applications. In 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), pp. 253-257, IEEE, January, 2019. https://doi.org/10.1109/ICREST .2019.8644216 CR - M. M. Abdelhamid and A.M. Allam, Detection of lung cancer using ultra wide band antenna. In 2016 Loughborough Antennas & Propagation Conference (LAPC), pp. 1-5, IEEE, November, 2016. https://doi .org/10.1109/LAPC.2016.7807452 CR - S. A. Kumar and T. Shanmuganantham, Design of implantable CPW fed monopole H-slot antenna for 2.45 GHz ISM band applications. AEU-International Journal of Electronics and Communications, 68(7), 661-666, 2014. https://doi.org/10.1016/j.aeue.2014.02 .010 CR - S. A. Kumar, M. A. Raj and T. Shanmuganantham, Analysis and design of CPW fed antenna at ISM band for biomedical applications. Alexandria Engineering Journal, 57(2), 723-727, 2018. https://doi.org/10.1016/ j.aej.2017.02.008 CR - M. L. Scarpello, D. Kurup, H. Rogier, D. V. Ginste, Axisa, F., J. Vanfleteren and G. Vermeeren, Design of an implantable slot dipole conformal flexible antenna for biomedical applications. IEEE transactions on antennas and propagation, 59(10), 3556-3564, 2011. https://doi.org/10.1109/TAP.2011.2163761 CR - S. Bhattacharjee, S. Maity, S. K. Metya and C. T.Bhunia, Performance enhancement of implantable medical antenna using differential feed technique. Engineering Science and Technology, an International Journal, 19(1), 642-650, 2016. https://doi.org/10.1016 /j.jestch.2015.09.001 CR - S. A. Kumar and T. Shanmuganantham, Design and analysis of implantable CPW fed bowtie antenna for ISM band applications. AEU-International Journal of Electronics and Communications, 68(2), 158-165, 2014. https://doi.org/10.1016/j.aeue.2013.08.003 CR - E. Doğancı, M. H. B. Ucar and A. Sondas, Preparation of a Human Skin-Mimicking Gels for In Vitro Measurements of the Dual-Band Medical Implant Antenna. Journal of the Turkish Chemical Society Section A: Chemistry, 3(3), 583-596, 2016. https://doi .org/10.18596/jotcsa.72855 CR - M. Palandoken, Compact bioimplantable MICS and ISM band antenna design for wireless biotelemetry applications. Radioengineering, 26(4), 917-923, 2017. CR - S. Sukhija and R.K. Sarin, Design and performance of two-sleeve low profile antenna for bio-medical applications. Journal of Electrical Systems and Information Technology, 4(1), 49-61, 2017. https://doi .org/10.1016/j.jesit.2016.10.013 CR - A. Kiourti, J. R. Costa, C. A. Fernandes and K. S. A. Nikita, Broadband implantable and a dual-band on-body repeater antenna: Design and transmission performance. IEEE transactions on antennas and propagation, 62(6), 2899-2908, 2014. https://doi.org/10 .1109 /TAP.2014.2310749 CR - P. Soontornpipit, A dual-band compact microstrip patch antenna for 403.5 MHz and 2.45 GHz on-body communications. Procedia Computer Science, 86, 232-235, 2016. https://doi.org/10.1016/j.procs.2016.05.105 CR - S. A. Kumar, T.Shanmuganantham and G. Sasikala, Design and development of implantable CPW fed monopole U slot antenna at 2.45 GHz ISM band for biomedical applications. Microwave and Optical Technology Letters, 57(7), 1604-1608, 2015. https:// doi.org/10.1002/mop.29151 CR - M. K. Magill, G. A. Conway and W. G. Scanlon, Tissue-independent implantable antenna for in-body communications at 2.36–2.5 GHz. IEEE Transactions on Antennas and Propagation, 65(9), 4406-4417, 2017. https://doi.org/10.1109/TAP.2017.2708119 CR - W. Xia, K. Saito, M. Takahashi, and K. Ito, Performances of an implanted cavity slot antenna embedded in the human arm. IEEE Transactions on Antennas and Propagation, 57(4), 894-899, 2009. https://doi.org/10.34385/proc.34.1A2b-2 CR - P. Soontornpipit, C. M. Furse and Y. C. Chung, Design of implantable microstrip antenna for communication with medical implants. IEEE Transactions on Microwave theory and techniques, 52(8), 1944-1951, 2004. https://doi.org/10.1109/TMTT.2004.831976 CR - S. Hashemi and J. Rashed-Mohassel, Design and miniaturization of dual band implantable antennas. Biocybernetics and Biomedical Engineering, 38(4), 868-876, 2018. https://doi.org/10.1016/j.bbe.2018.06. 008 CR - T. Karacolak, A. Z. Hood and E. Topsakal, Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring. IEEE Transactions on Microwave Theory and Techniques, 56(4), 1001-1008, 2008. https:// doi.org/10.1109/TMTT.2008.919373 CR - J. Mathew, M. Abraham and T. Mathew, Triple band printed modified bow-tie antenna for RFID reader/ISM applications. procedia computer science, 93, 48-52, 2016. https://doi.org/10.1016/j.procs.2016.07.180 CR - A. Sani, M. Rajab, R. Foster and Y. Hao, Antennas and propagation of implanted RFIDs for pervasive healthcare applications. Proceedings of the IEEE, 98(9), 1648-1655, 2010. https://doi.org/10.1109/JPR OC.2010.2051010 CR - R. K. Garg, S. Singhal and R. Tomar, A CPW Fed Clown-Shaped Super Wideband Antenna. Progress In Electromagnetics Research Letters, 99, 159-168, 2021. CR - Z. Ding, D. Zhang and C. Ma, Broadband antenna design with integrated CB-CPW and parasitic patch structure for WLAN, RFID, WiMAX, and 5G applications. IEEE Access, 8, 42877-42883, 2020. https://doi.org/10.1109/ACCESS.2020.2977616 CR - R. Simons, N. Coplanar waveguide circuits, components, and systems. John Wiley & Sons, 2004. CR - R. Garg, P. Bhartia, I. J. Bahl and A. Ittipiboon, Microstrip antenna design handbook. Artech house, 2001. CR - G. E. Kis and T. Okan, Compact Power-Symbol Shaped Microstrip Antenna for Healthcare Monitoring Systems. El-Cezeri, 9(1), 232-240, 2022. https://doi. org/10.31202/ecjse.959265 UR - https://doi.org/10.28948/ngumuh.1059091 L1 - https://dergipark.org.tr/en/download/article-file/2197093 ER -