TY - JOUR T1 - Extended Ostrowski Type Inequalities Involving Conformable Fractional Integrals AU - Erden, Samet AU - Bolu, Pınar PY - 2022 DA - April Y2 - 2022 JF - Konuralp Journal of Mathematics JO - Konuralp J. Math. PB - Mehmet Zeki SARIKAYA WT - DergiPark SN - 2147-625X SP - 182 EP - 187 VL - 10 IS - 1 LA - en AB - The purpose of this work is to establish extended Ostrowski type inequalities involving conformable fractional integrals. We first give an identity for functions whose α-fractional derivatives are bounded. After that, two extended Ostrowski type inequalities which involve conformable fractional integrals for functions whose α-fractional derivatives are bounded are developed. Additionally, the applications of numerical integration that emerged when investigating these inequalities are given. KW - Ostrowski inequality KW - bounded functions KW - conformable fractional calculus. CR - [1] T. Abdeljawad, On conformable fractional calculus, Journal of Computational and Applied Mathematics, 279 (2015) 57–66. CR - [2] T. Abdeljawad, M. A. Horani, R. Khalil, Conformable fractional semigroup operators, Journal of Semigroup Theory and Applications, vol. 2015 (2015) Article ID. 7. CR - [3] M. Abu Hammad, R. Khalil, Conformable fractional heat differential equations, International Journal of Differential Equations and Applications, 13( 3), 2014, 177-183. CR - [4] M. Abu Hammad, R. Khalil, Abel’s formula and wronskian for conformable fractional differential equations, International Journal of Differential Equations and Applications, 13( 3), 2014, 177-183. CR - [5] D. R. Anderson, Taylor’s formula and integral inequalities for conformable fractional derivatives, Contributions in Mathematics and Engineering, in Honor of Constantin Caratheodory, Springer, to appear. CR - [6] P. Cerone, S. S. Dragomir and J. Roumeliotis. An inequality of Ostrowski type for mappings whose second derivatives are bounded and applications. RGMIA Research Report Collection, Vol.1 No.1:Art.4 1998. CR - [7] S. S. Dragomir. A functional generalization of Ostrowski inequality via Montgomery identity. Acta Math. Univ. Comenian (N.S.), 84(1):63–78, 2015. CR - [8] S. S. Dragomir and N. S. Barnett. An ostrowski type inequality for mappings whose second derivatives are bounded and applications. RGMIA Research Report Collection, V.U.T., 1 (2): 67-76, 1999. CR - [9] S. S. Dragomir and S. Wang, A new inequality of Ostrowski’s type in L fpg - norm and applications to some special means and to some numerical quadrature rules. Tamkang J. of Math., 28, (1997), 239-244. CR - [10] S. S. Dragomir and S. Wang, A new inequality of Ostrowski’s type in L1 -norm and applications to some special means and to some numerical quadrature rules. Indian Journal of Mathematics, 40 (3), (1998), 299-304. CR - [11] S. S. Dragomir and R. P. Agarwal. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. lett., 11(5): 91-95, 1998. CR - [12] S. S. Dragomir, P. Cerone and J. Roumeliotis. A new generalization of Ostrowski’s integral inequality for mappings whose derivatives are bounded and applications in numerical integration and for special means. Applied Mathematics Letters, 13: 19-25. CR - [13] S. S. Dragomir and A. Sofo. An integral inequality for twice differentiable mappings and applications. Tamk. J. Math., 31(4), 2000. CR - [14] S. Erden, H. Budak and M. Z. Sarikaya, An Ostrowski Type Inequality for Twice Differentiable Mappings and Applications, Mathematical Modelling and Analysis, 21 (4), 2016, 522-532. CR - [15] M. A. Khan, S. Begum, Y. Khurshid and Y. M.Chu, Ostrowski type inequalities involving conformable fractional integrals. Journal of Inequalities and Applications 2018.1 (2018): 1-14. CR - [16] O.S. Iyiola and E. R. Nwaeze, Some new results on the new conformable fractional calculus with application using D’Alambert approach, Progr. Fract. Differ. Appl., 2(2), 115-122, 2016. CR - [17] R. Khalil, M. Al horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, Journal of Computational Apllied Mathematics, 264 (2014), 65-70. CR - [18] Z. Liu. Some Ostrowski type inequalities. Mathematical and Computer Modelling, 48:949-960, 2008. CR - [19] A. M. Ostrowski. U¨ ber die absolutabweichung einer differentiebaren funktion von ihrem integralmitelwert. Comment. Math. Helv. 10:226-227, 1938. CR - [20] M. Z. Sarikaya. On the Ostrowski type integral inequality. Acta Math. Univ. Comenianae, Vol.LXXIX No.1:129-134, 2010. CR - [21] M. Z. Sarikaya. On the Ostrowski type integral inequality for double integrals. Demonstratio Mathematica, Vol.XLV No.3:533-540, 2012. CR - [22] F. Usta, H. Budaki T. Tunc¸ and M. Z. Sarıkaya, New bounds for the Ostrowski type inequalities via conformable fractional calculus. Arabian Journal of Matheamtics, 7: 317-328. UR - https://dergipark.org.tr/en/pub/konuralpjournalmath/issue//1065062 L1 - https://dergipark.org.tr/en/download/article-file/2220710 ER -