TY - JOUR T1 - İlköğretim 8. Sınıf Matematik Öğretim Programı ve Ders Kitaplarının Fraktal Geometri Konusu Kapsamında Değerlendirilmesi TT - Assessing Grade 8 Elementary School Mathematics Curriculum and Textbooks within the Scope of Fractal Geometry AU - Karakuş, Fatih AU - Baki, Adnan PY - 2011 DA - September JF - İlköğretim Online JO - İOO PB - Sinan OLKUN WT - DergiPark SN - 1305-3515 SP - 1081 EP - 1092 VL - 10 IS - 3 LA - tr AB - Fraktal geometri son yıllarda matematik öğretim programlarımızda yer almaya başlayan bir konudur. Bu konunun matematik öğretim programlarına entegre edilmesi sürecinin başarılı olması için fraktalların öğretimine yönelik matematik öğretim programlarında ve ders kitaplarında yapılan çalışmaların değerlendirilmesi ve eksikliklerinin belirlenmesi gereklidir. Bu çalışmanın amacı, ilköğretim 8. sınıf matematik öğretim programı ve ders kitaplarını fraktal geometri konusu kapsamında değerlendirmektir. Bu bağlamda çalışmanın ilk bölümünde fraktalların temel özellikleri tanımlandı. Diğer bölümünde ise 8. sınıf matematik öğretim programında ve ders kitaplarında yer alan fraktal geometri konusuyla ilgili yapılan çalışmalar değerlendirildi ve önerilerde bulunuldu. KW - fraktal geometri KW - fraktalların öğretimi KW - matematik öğretim programı N2 - Fractals are recently integrated into mathematics curriculums in Turkey. Because the integrationprocess is successful, it is important that the studies of teaching fractals in the mathematics curriculum andtextbooks should be assessed. The purpose of this study was to assess the grade 8 elementary schoolmathematics curriculum, textbooks and workbooks within the scope of fractal geometry. In this respect, in thefirst part of the study the basic characteristics of fractals were defined. And the other parts of the study, thestudies in the mathematics curriculum and textbooks within the scope of fractals were evaluated and somesuggestions were recommended. CR - Adams, T.L. ve Aslan-Tutak, F. (2006). Serving Up Sierpinski Mathematics Teaching in The Middle School, 11(5), 248-251. CR - Aydın, N. ve Beşer, Ş. (2008). İlköğretim Matematik 8 Ders Kitabı. Ankara: Aydın Yayıncılık ve Eğitim Hizmetleri LTD. ŞTİ. CR - Baki, A. (2001). Bilişim Teknolojisi Işığı Altında Matematik Eğitiminin Değerlendirilmesi. Milli Eğitim Dergisi, 149, 26–31 CR - Barnsley, M. (1988). Fractals Everywhere. San Diego, CA: Academic Press. CR - Barton, P., S. (1990). Chaos and Fractals, Mathematics Teacher, 83 (7) 524-529. CR - Barry, D.T. (2000). Mathematics in Search of History. Mathematics Teacher, 93 (8), 647-650. CR - Cinkol, H. (2010). İlköğretim 8. Sınıf Matematik Ders Kitabı. Ankara: Pasifik Yayınları. CR - Coes, L. (1993). Building Fractal Models with Manipulatives. The Mathematics Teacher, v.86, n.8, 646-651. CR - Debnath, L. (2006). A Brief Historical Introduction to Fractals And Fractal Geometry. International Journal of Mathematical Education In Science And Technology, vol. 37, n.1, 29-50. CR - Devaney, R., L. (2004). Fractal Patterns and Chaos Games. Mathematics Teacher, 98(4), 228–233. CR - Falconer, K. (2003). Fractal Geometry Mathematical Foundations and Applications (2nd Edition). John Wiley & Sons Ltd, England. CR - Fraboni, M. & Moller, T. (2008). Fractals in The Classroom. Mathematics Teacher, 102, 3, 197. CR - Gleick, J. (2005). Kaos (Çev. Fikret Üçcan). Tübitak Yayınları, CR - Goldenberb, E.P. (1991). Seeing Beauty in Mathematics: Using Fractal Geometry to Build a Spirit of Mathematical Inquiry. In Zimmermann, W.& Cunningham, S. (Eds.) Visualization In Teaching And Learning Mathematics (pp. 39-66). Washington, D.C: Mathematical Association of America. CR - Karakuş, F., Kösa, T., & Karataş, İ. (2008). Matematik Öğretmeni Adaylarının Fraktal Geometriye Yönelik Görüşleri, 7. Matematik Sempozyumu, 13-15 Kasım 2008, İzmir. CR - Kelley, P. (1999). Build a Sierpinski Pyramid. Mathematics Teacher, 92(5), 384–386. CR - Lornell, R. & Westerberg, J. (1999). Fractals in High School: Exploring a New Geometry. Mathematics Teacher, 92(3), 260–269. CR - Mandelbrot, B. B. (1983). The Fractal Geometry of Nature. New York: W. H. Freeman and Co. CR - MEB (2008a). İlköğretim Matematik Dersi 6–8. Sınıflar Öğretim Programı. 07.11.2008 tarihinde http://ttkb.meb.gov.tr/ adresinden indirilmiştir. CR - MEB (2008b). Ilköğretim Matematik 8. Ders Kitabı. Ankara: Milli Eğitim Bakanlığı Ders Kitapları Dizisi. CR - Naylor, M. (1999). Exploring Fractals in The Classroom. Mathematics Teacher, 92(4), 360– 366. CR - NCTM (1989). Curriculum and Evaluation Standards for School Mathematics. Reston, VA: NCTM. CR - Olkun, S. & Uçar, Z.T. (2007). İlköğretimde Etkinlik Temelli Matematik Öğretimi. Ankara: Cem Ofset. CR - Peitgen, H-O., Jürgens, H., Saupe, D., Maletsky, E., Perciante, T.& Yunker, L. (1992). Fractals For The Classroom: Strategic Activities Volume One. NCTM, Springer. CR - Peitgen, H-O., Jürgens, H. & Saupe, D. (2004). Chaos and Fractals New Frontiers of Science Second Edition. New York: Springer-Verlag. CR - Thomas, D. A. (1989). Investigating Fractal Geometry Using LOGO. Journal of Computers in Mathematics and Science Teaching. v8, n3, 25- 31. CR - Üstün, C. (1999). Fraktal Geometri Konusunun Ortaöğretim Programına Uygulanması. Yayınlanmamış Yüksek Lisans Tezi, K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon. CR - Vacc, N. N. (1999). Exploring Fractal Geometry with Children. School Science and Mathematics, v99, n2, 77-83. UR - https://dergipark.org.tr/en/pub/ilkonline/issue//106796 L1 - https://dergipark.org.tr/en/download/article-file/90636 ER -