TY - JOUR T1 - Central Collineations in Fuzzy and Intuitionistic Fuzzy Projective Planes TT - Central Collineations in Fuzzy and Intuitionistic Fuzzy Projective Planes AU - Altıntaş, Elif AU - Bayar, Ayşe PY - 2022 DA - May DO - 10.31590/ejosat.1075566 JF - Avrupa Bilim ve Teknoloji Dergisi JO - EJOSAT PB - Osman SAĞDIÇ WT - DergiPark SN - 2148-2683 SP - 355 EP - 363 IS - 35 LA - en AB - In this paper, the fuzzy counterparts and intuitionistic fuzzy counterparts of the central collineations defined in classical projective planes are defined in fuzzy and intuitionistic fuzzy projective planes, respectively. The properties of fuzzy and intuitionistic fuzzy projective planes left invariant under the fuzzy central collineations and the intuitionistic fuzzy central collineations are characterized depending on the base point, base line and the membership degrees of fuzzy projective plane and intuitionistic fuzzy projective plane. KW - Central Collineation KW - Fuzzy Projective Plane KW - Intuitionistic Fuzzy Projective Plane KW - Projective Plane. N2 - In this paper, the fuzzy counterparts and intuitionistic fuzzy counterparts of the central collineations defined in classical projective planes are defined in fuzzy and intuitionistic fuzzy projective planes, respectively. The properties of fuzzy and intuitionistic fuzzy projective planes left invariant under the fuzzy central collineations and the intuitionistic fuzzy central collineations are characterizeddepending on the base point, base line and the membership degrees of fuzzy projective plane and intuitionistic fuzzy projective plane. CR - K.S. Abdukhalikov, The Dual of a Fuzzy Subspace, FSS 82 (1996) 375-381. CR - Z. Akc¸a, A. Bayar, S. Ekmekc¸i, H.V. Maldeghem, Fuzzy projective spreads of fuzzy projective spaces, Fuzzy Sets and Systems, 157(24) (2006) 3237–3247. CR - E. Altıntas¸ Kahriman, On Maps in Fuzzy and Intuitionistic Fuzzy Projective Planes, Eskis¸ehir Osmangazi University, Institute of Science, Doctoral Thesis, 2020. CR - K.T. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, 20 (1986) 87-96. CR - R. Baer, Projectivities with fixed points on every line of the plane. Bull. Amer. Math. Soc. 52 (1946) 273-286 . CR - E. A. Ghassan, Intuitionistic fuzzy projective geometry, J. of Al-Ambar University for Pure Science, 3 (2009) 1-5. CR - D. R. Hughes and F. C. Piper, Projective Planes, Springer-Verlag, New York Heidelberg, Berlin, 1973. CR - A. K. Katsaras, D. B. Liu, Fuzzy vector spaces and fuzzy topological vector spaces, J. Math. Anal. Appl. 58 (1) (1977) 135-146. CR - L. Kuijken, H.V. Maldeghem, E.E. Kerre, Fuzzy projective geometries from fuzzy vector spaces, Information processing and management of uncertainty in knowledge-based systems. Editions Medicales et Scientifiques. Paris,La Sorbonne, (1998) 1331–8. CR - L. Kuijken, H.V. Maldeghem, E.E. Kerre, Fuzzy projective geometries from fuzzy groups, Tatra Mt. Math. Publ. 16 (1999) 85-108. CR - L. Kuijken, Fuzzy projective geometries, Mathematics, Computer Science, EUSFLAT- ESTYLF Joint Conf., 1999. UR - https://doi.org/10.31590/ejosat.1075566 L1 - https://dergipark.org.tr/en/download/article-file/2261518 ER -