TY - JOUR T1 - Coefficients of Randic and Sombor characteristic polynomials of some graph types AU - Oz, Mert Sinan PY - 2022 DA - September Y2 - 2022 DO - 10.31801/cfsuasmas.1080426 JF - Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics JO - Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. PB - Ankara University WT - DergiPark SN - 1303-5991 SP - 778 EP - 790 VL - 71 IS - 3 LA - en AB - Let GG be a graph. The energy of GG is defined as the summation of absolute values of the eigenvalues of the adjacency matrix of GG. It is possible to study several types of graph energy originating from defining various adjacency matrices defined by correspondingly different types of graph invariants. The first step is computing the characteristic polynomial of the defined adjacency matrix of GG for obtaining the corresponding energy of GG. In this paper, formulae for the coefficients of the characteristic polynomials of both the Randic and the Sombor adjacency matrices of path graph PnPn, cycle graph CnCn are presented. Moreover, we obtain the five coefficients of the characteristic polynomials of both Randic and Sombor adjacency matrices of a special type of 3−regular graph RnRn. KW - Graphs KW - Randic matrix KW - Sombor matrix KW - paths KW - cycles KW - adjacency CR - Bapat, R. B., Graphs and Matrices, Springer, London, 2010. http://dx.doi.org/10.1007/978-1-84882-981-7 CR - Bozkurt, S. B., Güngör, A. D., Gutman, I., Çevik, A. S., Randic matrix and Randic energy, MATCH Commun. Math. Comput. Chem., 64(1) (2010), 239–250. CR - Cvetkovic, D. M., Doob, M., Sachs, H., Spectra of Graphs – Theory and Application, Academic Press, New York, 1980. CR - Das, K. C., Sorgun, S., Xu, K., On the Randic energy of graphs, MATCH Commun. Math. Comput. Chem., 72(1) (2014), 227–238. CR - Ghanbari, N., On the Sombor characteristic polynomial and Sombor energy of a graph, arXiv: 2108.08552, 2021. https://doi.org/10.48550/arXiv.2108.08552 CR - Gutman, I., The energy of a graph, Ber. Math-Statist. Sekt. Forschungsz. Graz, 103 (1978), 1–22. CR - Gutman, I., Impact of the Sachs theorem on theoretical chemistry: A participant’s testimony, MATCH Commun. Math. Comput. Chem., 48 (2003), 17–34. CR - Gutman, I., Furtula, B., Bozkurt, S. B., On Randic energy, Linear Algebra Appl., 442 (2014), 50–57. http://dx.doi.org/10.1016/j.laa.2013.06.010 CR - Gutman, I., Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem., 86(1) (2021), 11–16. CR - Gutman, I., Spectrum and energy of the Sombor matrix, Vojno tehn. glas., 69(3) (2021), 551–561. http://dx.doi.org/10.5937/vojtehg69-31995 CR - Gutman, I., Redzepovic, I., Rada, J., Relating energy and Sombor energy, Contrib. Math., 4 (2021), 41–44. DOI: 10.47443/cm.2021.0054 CR - Gutman, I., Redzepovic, I., Sombor energy and Huckel rule, Discrete Math. Lett., 9 (2022), 67–71. DOI: 10.47443/dml.2021.s211 CR - Janezic, D., Milicevic, A., Nikolic, S., Trinajstic, N., Graph Theoretical Matrices in Chemistry, CRC Press, Boca Raton, 2015. http://dx.doi.org/10.1201/b18389 CR - Jayanna, G. K., Gutman, I., On characteristic polynomial and energy of Sombor matrix, Open J. Discret. Appl. Math., 4 (2021), 29–35. http://dx.doi.org/10.30538/psrp-odam2021.0062 CR - Li, X., Shi, Y., Gutman, I., Graph Energy, Springer, New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4220-2 CR - Randic, M., On characterization of molecular branching, J. Am. Chem. Soc., 97(23) (1975), 6609–6615. http://dx.doi.org/10.1021/ja00856a001 CR - Redzepovic, I., Gutman, I., Comparing energy and Sombor energy–An empirical study, MATCH Commun. Math. Comput. Chem., 88(1) (2022), 133–140. CR - Sachs, H., Uber selbstkomplement¨are graphen, Publ. Math. Debrecen, 9 (1962), 270-288. UR - https://doi.org/10.31801/cfsuasmas.1080426 L1 - https://dergipark.org.tr/en/download/article-file/2280285 ER -