TY - JOUR T1 - On the Generalized of p-harmonic Maps AU - Mohammed Cherif, Ahmed AU - Merdji, Bouchra PY - 2022 DA - October Y2 - 2022 DO - 10.36890/iejg.1085856 JF - International Electronic Journal of Geometry JO - Int. Electron. J. Geom. PB - Kazım İlarslan WT - DergiPark SN - 1307-5624 SP - 183 EP - 191 VL - 15 IS - 2 LA - en AB - In this paper, we extend the definition of p-harmonic and p-biharmonic maps between Riemannian manifolds. We present some new properties for the generalized stable p-harmonic maps. KW - $p$-harmonic maps KW - $p$-biharmonic maps KW - stable $p$-harmonic maps CR - [1] Baird, P., Wood, J. C.: Harmonic morphisms between Riemannain manifolds. Clarendon Press, Oxford (2003). CR - [2] Baird, P., Gudmundsson, S.: p-Harmonic maps and minimal submanifolds. Math. Ann. 294, 611-624 (1992). CR - [3] Bojarski, B., Iwaniec, T.: p-Harmonic equation and quasiregular mappings. Banach Center Publ. 19 (1), 25-38 (1987). CR - [4] Cheung, L-F., Leung, P-F.: Some results on stable p-harmonic maps. Glasgow Math. J. 36, 77-80 (1994). CR - [5] Eells, J., Sampson, J. H.:Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86, 109-160 (1964). CR - [6] Fardoun, A.: On equivariant p-harmonic maps. Ann. Inst. Henri. Poincare. 15, 25-72 (1998). CR - [7] Jiang, G. Y.: 2-harmonic maps and their first and second variational formulas. Chinese Ann. Math. Ser. A. 7 (4), 389-402 (1986). CR - [8] Mohammed Cherif, A.: On the p-harmonic and p-biharmonic maps. J. Geom. 109 (41), (2018). CR - [9] Nagano, T., Sumi M.: Stability of p-harmonic maps. Tokyo J. Math. 15 (2), 475-482 (1992). CR - [10] Xin Y.: Geometry of harmonic maps. Fudan University (1996). UR - https://doi.org/10.36890/iejg.1085856 L1 - https://dergipark.org.tr/en/download/article-file/2302074 ER -