TY - JOUR T1 - Comparison of estimation methods for the Kumaraswamy Weibull distribution AU - Ergenç, Cansu AU - Şenoğlu, Birdal PY - 2023 DA - March Y2 - 2022 DO - 10.31801/cfsuasmas.1086966 JF - Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics JO - Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. PB - Ankara University WT - DergiPark SN - 1303-5991 SP - 1 EP - 21 VL - 72 IS - 1 LA - en AB - In this study, the performances of the different parameter estimation methods are compared for the Kumaraswamy Weibull distribution via Monte Carlo simulation study. Maximum Likelihood (ML), Least Squares (LS), Weighted Least Squares (WLS), Cramer-von Mises (CM) and Anderson Darling (AD) methods are used in the comparisons. The results of the Monte Carlo simulation study demonstrate that ML estimators for the parameters of the Kumaraswamy Weibull distribution are more efficient than the other estimators. It is followed by AD estimator. At the end of the study, a real data set taken from the literature is used to illustrate the applicability of the Kumaraswamy Weibull distribution. KW - KwWeibull distribution KW - Weibull distribution KW - estimation methods KW - Monte Carlo simulation KW - efficiency CR - Acitas, S., Senoglu, B., Robust factorial ANCOVA with LTS error distributions, Hacet. J. Math. Stat., 47(2) (2018), 347-363. https://doi.org/10.15672/HJMS.201612918797 CR - Akgül, F. G., Şenoğlu, B., Arslan, T., An alternative distribution to Weibull for modeling the wind speed data: Inverse Weibull distribution, Energy Convers. Manag., 114 (2016), 234-240. https://doi.org/10.1016/j.enconman.2016.02.026 CR - Bowman, K. O., Shenton, L. R., Weibull distributions when the shape parameter is defined, Comput Stat Data Anal, 36(3) (2001), 299-310. https://doi.org/10.1016/S0167-9473(00)00048-7 CR - Calabria, R., Pulcini, G., An engineering approach to Bayes estimation for the Weibull distribution, Microelectron. Reliab., 34(5) (1994), 789-802. https://doi.org/10.1016/0026-2714(94)90004-3 CR - Cordeiro, G. M., de Castro, M., A new family of generalized distributions, J. Stat. Comput. Simul., 81(7) (2011), 883-898. https://doi.org/10.1080/00949650903530745 CR - Cordeiro, G. M., Ortega, E. M., Nadarajah, S., The Kumaraswamy Weibull distribution with application to failure data, J Franklin Inst, 347(8) (2010), 1399-1429. https://doi.org/10.1016/j.jfranklin.2010.06.010 CR - Cortez, P., Morais, A. D. J. R., A data mining approach to predict forest fires using meteorological data, New Trends in Artificial Intelligence: Proceedings of the 13th Portuguese Conference on Artificial Intelligence, Guimaraes, Portugal, (2007), 512-523. CR - Elbatal, I., Diab, L. S., Alim, N. A., Transmuted generalized linear exponential distribution, Int. J. Comput. Appl., 83(17) (2013), 29-37. https://doi.org/10.1515/eqc-2013-0020 CR - Elbatal, I., Elgarhy, M., Statistical properties of Kumaraswamy quasi Lindley distribution, IJMTT, 4(10) (2013), 237-246. CR - Ergenç, C., Statistical Inference for Some Non-Normal Distributions, Master Thesis, Ankara University, 2021. CR - Eugene, N., Lee, C., Famoye, F., Beta-normal distribution and its applications, Commun. Stat. Theory Methods, 31(4) (2002), 497-512. https://doi.org/10.1081/STA-120003130 CR - Gomes, A. E., da-Silva, C. Q., Cordeiro, G. M., Ortega, E. M., A new lifetime model: the Kumaraswamy generalized Rayleigh distribution, J. Stat. Comput. Simul., 84(2) (2014), 290-309. https://doi.org/10.1080/00949655.2012.706813 CR - Islam, M. Q., Tiku, M. L., Multiple linear regression model under nonnormality, Commun. Stat. Theory Methods, 33(10) (2005), 2443-2467. https://doi.org/10.1081/STA-200031519 CR - Jones, M. C., Kumaraswamy’s distribution: A beta-type distribution with some tractability advantages, Stat. Methodol., 6 (2008), 70–81. https://doi.org/10.1016/j.stamet.2008.04.001 CR - Kantar, Y. M., Şenoğlu, B., A comparative study for the location and scale parameters of the Weibull distribution with given shape parameter, Comput Geosci, 34(12) (2008), 1900-1909. https://doi.org/10.1016/j.cageo.2008.04.004 CR - Keats, J. B., Lawrence, F. R., Wang, F. K., Weibull maximum likelihood parameter estimates with censored data, J. Qual. Technol., 29(1) (1997), 105-110. https://doi.org/10.1080/00224065.1997.11979730 CR - Maurya, S. K., Singh, S. K., Singh, U., A new right-skewed upside down bathtub shaped heavytailed distribution and its applications, J. Mod. Appl. Stat. Methods, 19(1) (2020), eP2888. https://doi.org/10.22237/jmasm/1608552600 CR - Mudholkar, G. S., Srivastava, D. K., Exponentiated Weibull family for analyzing bathtub failure-rate data, IEEE Trans. Reliab., 42(2) (1993), 299-302. CR - Rocha, R., Nadarajah, S., Tomazella, V., Louzada, F., Eudes, A., New defective models based on the Kumaraswamy family of distributions with application to cancer data sets, Stat Methods Med Res, 26(4) (2017), 1737-1755. https://doi.org/10.1177/0962280215587976 CR - Saeed, M. K., Salam, A., Rehman, A. U., Saeed, M. A., Comparison of six different methods of Weibull distribution for wind power assessment: A case study for a site in the Northern region of Pakistan, Sustain. Energy Technol. Assess., 36 (2019), 100541. https://doi.org/10.1016/j.seta.2019.100541 CR - Sarhan, A. M., Zaindin, M., Modified Weibull distribution, APPS. Applied Sciences, 11 (2009), 123-136. CR - Serban, A., Paraschiv, L. S., Paraschiv, S., Assessment of wind energy potential based on Weibull and Rayleigh distribution models, Energy Rep., 6 (2020), 250-267. https://doi.org/10.1016/j.egyr.2020.08.048 CR - Swain, J. J., Venkatraman, S., Wilson, J. R., Least-squares estimation of distribution functions in Johnson’s translation system, J Stat Comput Simul, 29(4) (1988), 271-297. https://doi.org/10.1080/00949658808811068 CR - Wolfowitz, J., Estimation by the minimum distance method in nonparametric stochastic difference equations, Ann. Math. Stat., 25(2) (1954), 203-217. http://www.jstor.org/stable/2236727 CR - Wolfowitz, J., Estimation by the minimum distance method, Ann Inst Stat Math, 5(1) (1953), 9-23. UR - https://doi.org/10.31801/cfsuasmas.1086966 L1 - https://dergipark.org.tr/en/download/article-file/2306210 ER -