TY - JOUR T1 - Numerical analysis of the effect of the evaporator inlet-outlet position on the PV-T performance TT - Evaporatör giriş-çıkış konumunun PV-T performansı üzerindeki etkisinin sayısal analizi AU - Yakut, Ridvan PY - 2023 DA - January Y2 - 2022 DO - 10.17714/gumusfenbil.1101110 JF - Gümüşhane Üniversitesi Fen Bilimleri Dergisi PB - Gumushane University WT - DergiPark SN - 2146-538X SP - 145 EP - 159 VL - 13 IS - 1 LA - en AB - The increase in global energy consumption and carbon dioxide emissions increase the interest in renewable energy sources. Solar energy is at the forefront of renewable energy sources, and the decrease in cell efficiency due to various reasons during operation is an obstacle to this technology. Increasing the temperature of photovoltaic cells during operation causes a decrease in cell efficiency. Control of photovoltaic cells temperature is crucial in terms of both prolonging the economic life of the cells and increasing the efficiency of the system. The effect of the evaporator inlet and outlet position of the fluid on the heat transfer is known, but this effect was not examined in the studies carried out to increase the efficiency of the PV-T (photovoltaic–thermal) system. In the current study, the system efficiency parameters and COP (coefficient of performance) values of a PV-T evaporator cooled by forced air circulation were investigated by CFD (computational fluid dynamics) analysis. The analyzes were carried out in a single array for three different flow rates (0.0125 kg/s, 0.0250 kg/s, 0.0500 kg/s) and nine different evaporator inlet-outlet positions (CC, CL, CR, RC, RL, RR, LC, LL, LR), constant radiation of 1000 W/m^2. It was determined that there is a total efficiency difference of over 20% and an overall COP difference of over 25% between the best and worst inlet-outlet positions. The highest total and thermal efficiency were obtained for the RR condition, and the highest electrical efficiency was obtained for the LR condition but in the long-term, the highest efficiency can be achieved with the LC design. In the study also the highest COP values were calculated for the CL condition and the worst COP values for the RR condition. KW - CFD KW - COP KW - Electrical efficiency KW - Photovoltaic thermal collectors KW - Thermal efficiency N2 - Küresel enerji tüketimindeki ve karbondioksit emisyonlarındaki artış, yenilenebilir enerji kaynaklarına olan ilgiyi artırmaktadır. Yenilenebilir enerji kaynaklarının başında güneş enerjisi gelmektedir ve çalışma esnasında çeşitli sebeplerle hücre verimliliğinin düşmesi bu teknolojinin önündeki engeldir. Fotovoltaik hücrelerin çalışma sırasında sıcaklığının artması hücre veriminin düşmesine neden olmaktadır. Fotovoltaik hücre sıcaklığının kontrolü hem hücrelerin ekonomik ömrünü uzatmak hem de sistemin verimini artırmak açısından çok önemlidir. Akışkanın buharlaştırıcıya giriş ve çıkış konumunun ısı transferine etkisi bilinmektedir ancak PV-T (fotovoltaik-termal) sisteminin verimini artırmak için yürütülen çalışmalarda bu etki incelenmemiştir. Bu çalışmada, cebri hava sirkülasyonu ile soğutulan bir PV-T evaporatörün sistem verimlilik parametreleri ve COP (performans katsayısı) değerleri, HAD (hesaplamalı akışkanlar dinamiği) analizi ile incelenmiştir. Analizler, tek dizide, üç farklı debide (0.0125 kg/s, 0.0250 kg/s, 0.0500 kg/s), dokuz farklı buharlaştırıcıya giriş-çıkış pozisyonu (CC, CL, CR, RC, RL, RR, LC, LL, LR) ve 1000 W/m2 sabit radyasyon için yürütülmüştür. En iyi ve en kötü giriş-çıkış konumları arasında %20'nin üzerinde bir toplam verimlilik farkı ve %25'in üzerinde bir genel COP farkı olduğu belirlenmiştir. En yüksek toplam ve termal verim RR koşulu için, en yüksek elektriksel verim LR koşulu için elde edilmiştir ancak uzun vadede en yüksek verim LC tasarımı ile elde edilebilmektedir. Çalışmada ayrıca CL koşulu için en yüksek COP değerleri ve RR koşulu için en kötü COP değerleri hesaplanmıştır. CR - Abdullah, A. L., Misha, S., Tamaldin, N., Rosli, M. A. M., & Sachit, F. A. (2019). A Review: Parameters affecting the PVT collector performance on the thermal, electrical, and overall efficiency of PVT system. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 60(2), 191-232. https://akademiabaru.com/submit/index.php/arfmts/article/view/2643/1707 CR - Adinoyi, M. J., & Said, S. A. M. (2013). Effect of dust accumulation on the power outputs of solar photovoltaic modules. Renewable Energy, 60, 633-636. https://doi.org/10.1016/j.renene.2013.06.014 CR - Alessandro, M., Niccolao, A., & Fabrizio, L. (2021). Photovoltaic-thermal solar-assisted heat pump systems for building applications: Integration and design methods. Energy and Built Environment. https://doi.org/10.1016/j.enbenv.2021.07.002 CR - Ali, K., Khan, S. A., & Jafri, M. Z. M. (2014). Effect of double layer (SiO2/TiO2) anti-reflective coating on silicon solar cells. International Journal of Electrochemical Science, 9(12), 7865-7874. http://www.electrochemsci.org/papers/vol9/91207865.pdf CR - Alshawaf, M., Poudineh, R., & Alhajeri, N. S. (2020). Solar PV in Kuwait: The effect of ambient temperature and sandstorms on output variability and uncertainty. Renewable and Sustainable Energy Reviews, 134, 110346. https://doi.org/10.1016/j.rser.2020.110346 CR - Ansys, I. (2009). Ansys fluent 12.0 user’s guide. New Hampshire: Ansys Inc, 35-47. https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/main_pre.htm CR - Arslan, E., Aktaş, M., & Can, Ö. F. (2020). Experimental and numerical investigation of a novel photovoltaic thermal (PV/T) collector with the energy and exergy analysis. Journal of Cleaner Production, 276, 123255. https://doi.org/10.1016/j.jclepro.2020.123255 CR - Atmaca, M., & Akiskalioğlu, E. (2020). PV/T sisteminde cam kapak özelliklerinin elektriksel ve termal verime etkilerinin araştırılması. Bartın University International Journal of Natural and Applied Sciences, 3(2), 52-65. https://dergipark.org.tr/tr/pub/jonas/issue/57209/766617 CR - Atmaca, M., & Pektemir, I. Z. (2019). An investigation on the effect of the total efficiency of water and air used together as a working fluid in the photovoltaic thermal systems. Processes, 7(8), 516. https://doi.org/10.3390/pr7080516 CR - Atmaca, M., & Pektemir, İ. Z. (2019). PV panelinin altına serbest olarak yerleştirilen siyah emici plakanın termal kapasitesinin belirlenmesi. International Journal of Advances in Engineering and Pure Sciences, 31(4), 280-285. https://doi.org/10.7240/jeps.470175 CR - Atmaca, M., & Pektemir, İ. Z. (2020). Photovoltaic-thermal system for building application: A case study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-18. https://doi.org/10.1080/15567036.2020.1817180 CR - Bakari, R., Minja, R. J. A., & Njau, K. N. (2014). Effect of glass thickness on performance of flat plate solar collectors for fruits drying. Journal of Energy, 2014. https://doi.org/10.1155/2014/247287 CR - Belaidi, A., Dittrich, T., Kieven, D., Tornow, J., Schwarzburg, K., & Lux‐Steiner, M. (2008). Influence of the local absorber layer thickness on the performance of ZnO nanorod solar cells. Physica Status Solidi, 2(4), 172-174. https://doi.org/10.1002/pssr.200802092 CR - Chegaar, M., Ouennoughi, Z., & Guechi, F. (2004). Extracting dc parameters of solar cells under illumination. Vacuum, 75(4), 367-372. https://doi.org/10.1016/j.vacuum.2004.05.001 CR - Chein, R., & Chen, J. (2009). Numerical study of the inlet/outlet arrangement effect on microchannel heat sink performance. International Journal of Thermal Sciences, 48(8), 1627-1638. https://doi.org/10.1016/j.ijthermalsci.2008.12.019 CR - Cuce, E., & Cuce, P. M. (2014). Improving thermodynamic performance parameters of silicon photovoltaic cells via air cooling. International Journal of Ambient Energy, 35(4), 193-199. https://doi.org/10.1080/01430750.2013.793481 CR - Cuce, E., Cuce, P. M., & Bali, T. (2013). An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters. Applied Energy, 111, 374-382. https://doi.org/10.1016/j.apenergy.2013.05.025 CR - Delfani, S., Esmaeili, M., & Karami, M. (2019). Application of artificial neural network for performance prediction of a nanofluid-based direct absorption solar collector. Sustainable Energy Technologies and Assessments, 36, 100559. https://doi.org/10.1016/j.seta.2019.100559 CR - Dhass, A. D., Kumar, R. S., Lakshmi, P., Natarajan, E., & Arivarasan, A. (2020). An investigation on performance analysis of different PV materials. Materials Today: Proceedings, 22, 330-334. https://doi.org/10.1016/j.matpr.2019.06.005 CR - Do Ango, A. C. M., Médale, M., & Abid, C. (2013). Optimization of the design of a polymer flat plate solar collector. Solar Energy, 87, 64-75. https://doi.org/10.1016/j.solener.2012.10.006 CR - Dondapati, R. S., Agarwal, R., Saini, V., Vyas, G., & Thakur, J. (2018). Effect of glazing materials on the performance of solar flat plate collectors for water heating applications. Materials Today: Proceedings, 5(14), 27680-27689. https://doi.org/10.1016/j.matpr.2018.10.002 CR - Du, B., Hu, E., & Kolhe, M. (2012). Performance analysis of water cooled concentrated photovoltaic (CPV) system. Renewable and sustainable energy reviews, 16(9), 6732-6736. https://doi.org/10.1016/j.rser.2012.09.007 CR - Ekramian, E., Etemad, S. G., & Haghshenasfard, M. (2014). Numerical analysis of heat transfer performance of flat plate solar collectors. Journal of Fluid Flow, Heat and Mass Transfer (JFFHMT), 1, 38-42. https://doi.org/10.11159/jffhmt.2014.006 CR - Ettah, E. B., Udoimuk, A. B., Obiefuna, J. N., & Opara, F. E. (2012). The effect of relative humidity on the efficiency of solar panels in Calabar, Nigeria. Universal Journal of Management and Social Sciences, 2(3), 8-11. https://www.semanticscholar.org/paper/The-Effect-of-Relative-Humidity-on-the-Efficiency-Ettah-Udoimuk/55e0a5bbacaea26d012ad99b0291240935813b47 CR - Evans, D. L. (1981). Simplified method for predicting photovoltaic array output. Solar Energy, 27(6), 555-560. https://doi.org/10.1016/0038-092X(81)90051-7 CR - Fesharaki, V. J., Dehghani, M., Fesharaki, J. J., & Tavasoli, H. (2011). The effect of temperature on photovoltaic cell efficiency. Proceedings of the 1st International Conference on Emerging Trends in Energy Conservation 1-6. https://research.iaun.ac.ir/pd/jjfesharakiold/pdfs/PaperC_4124.pdf CR - Fluent, A. (2013). Ansys fluent theory guide; Ansys Inc., Release, 15. https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/main_pre.htm CR - Ghamari, D. M., & Worth, R. A. (1992). The effect of tube spacing on the cost-effectiveness of a flat-plate solar collector. Renewable Energy, 2(6), 603-606. https://doi.org/10.1016/0960-1481(92)90025-X CR - Hamrouni, N., Jraidi, M., & Chérif, A. (2008). Solar radiation and ambient temperature effects on the performances of a PV pumping system. Journal of Renewable Energies, 11(1), 95-106. https://www.asjp.cerist.dz/en/article/119583 CR - Handoyo, E. A., & Ichsani, D. (2013). The optimal tilt angle of a solar collector. Energy Procedia, 32, 166-175. https://doi.org/10.1016/j.egypro.2013.05.022 CR - Hassan, H., & Abo-Elfadl, S. (2018). Experimental study on the performance of double pass and two inlet ports solar air heater (SAH) at different configurations of the absorber plate. Renewable Energy, 116, 728-740. https://doi.org/10.1016/j.renene.2017.09.047 CR - Ji, J., Han, J., Chow, T.-t., Yi, H., Lu, J., He, W., & Sun, W. (2006). Effect of fluid flow and packing factor on energy performance of a wall-mounted hybrid photovoltaic/water-heating collector system. Energy and Buildings, 38(12), 1380-1387. https://doi.org/10.1016/j.enbuild.2006.02.010 CR - Jiang, H., Lu, L., & Sun, K. (2011). Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules. Atmospheric Environment, 45(25), 4299-4304. https://doi.org/10.1016/j.atmosenv.2011.04.084 CR - Joshi, A. S., Tiwari, A., Tiwari, G. N., Dincer, I., & Reddy, B. V. (2009). Performance evaluation of a hybrid photovoltaic thermal (PV/T)(glass-to-glass) system. International Journal of Thermal Sciences, 48(1), 154-164. https://doi.org/10.1016/j.ijthermalsci.2008.05.001 CR - Kalkan, C., Ezan, M. A., Duquette, J., Yilmaz Balaman, Ş., & Yilanci, A. (2019). Numerical study on photovoltaic/thermal systems with extended surfaces. International Journal of Energy Research, 43(10), 5213-5229. https://doi.org/10.1002/er.4477 CR - Kandilli, C., Külahlı, G., & Savcı, G. (2013). Fotovoltaik termal (PVT) sistem 2D termodinamik modellenmesi ve deneysel sonuçlarla karşılaştırılması. 11. Ulusal Tesisat Mühendisliği Kongresi, 17, 20. http://www1.mmo.org.tr/etkinlikler/tesisat/etkinlik_bildirileri_detay.php?etkinlikkod=246&bilkod=1857 CR - Kehrer, M., Künzel, H. M., & Sedlbauer, K. (2003). Ecological insulation materials-does sorption moisture affect their insulation performance? Journal of Thermal Envelope and Building Science, 26(3), 207-212. https://doi.org/10.1177/109719603027869 CR - Kennedy, C. E. (2002). Review of mid-to high-temperature solar selective absorber materials. https://www.nrel.gov/docs/fy02osti/31267.pdf CR - Kim, Y., & Seo, T. (2007). Thermal performances comparisons of the glass evacuated tube solar collectors with shapes of absorber tube. Renewable Energy, 32(5), 772-795. https://doi.org/10.1016/j.renene.2006.03.016 CR - Koech, R. K., Ondieki, H. O., Tonui, J. K., & Rotich, S. K. (2012). A steady state thermal model for photovoltaic/thermal (PV/T) system under various conditions. International Journal of Scientific & Technology Research, 1(11), 1-5. http://www.ijstr.org/final-print/dec2012/A-Steady-State-Thermal-Model-For-Photovoltaicthermal-Pvt-System-Under-Various-Conditions.pdf CR - Lu, S., Liang, R., Zhang, J., & Zhou, C. (2019). Performance improvement of solar photovoltaic/thermal heat pump system in winter by employing vapor injection cycle. Applied Thermal Engineering, 155, 135-146. https://doi.org/10.1016/j.applthermaleng.2019.03.038 CR - Malvi, C. S., Gupta, A., Gaur, M. K., Crook, R., & Dixon-Hardy, D. W. (2017). Experimental investigation of heat removal factor in solar flat plate collector for various flow configurations. International Journal of Green Energy, 14(4), 442-448. https://doi.org/10.1080/15435075.2016.1268619 CR - Masters, G. M. (2004). Photovoltaic materials and electrical characteristics. Renewable and Efficient Electric Power Systems. https://doi.org/10.1002/0471668826.ch8 CR - Moodley, P. (2021). 1 - Sustainable biofuels: opportunities and challenges. In Sustainable Biofuels (pp. 1-20). Academic Press. https://doi.org/10.1016/B978-0-12-820297-5.00003-7 CR - Morice, C. P., Kennedy, J. J., Rayner, N. A., & Jones, P. D. (2012). Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. Journal of Geophysical Research: Atmospheres, 117(D8). https://doi.org/10.1029/2011JD017187 CR - Nahar, A., Hasanuzzaman, M., & Rahim, N. A. (2017). Numerical and experimental investigation on the performance of a photovoltaic thermal collector with parallel plate flow channel under different operating conditions in Malaysia. Solar Energy, 144, 517-528. https://doi.org/10.1016/j.solener.2017.01.041 CR - Omeroğlu, G. (2018). Fotovoltaik-Termal (PV/T) sistemin sayısal (CFD) ve deneysel analizi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 30(1), 161-167. https://dergi.firat.edu.tr/index.php/mbd/article/view/505 CR - Ozakin, A. N., & Kaya, F. (2019). Effect on the exergy of the PVT system of fins added to an air-cooled channel: A study on temperature and air velocity with Ansys Fluent. Solar Energy, 184, 561-569. https://doi.org/10.1016/j.solener.2019.03.100 CR - Ozakin, A. N., Yakut, K., & Khalaji, M. N. (2020). Performance analysis of photovoltaic-heat pump (PV/T) combined systems: A comparative numerical study. Journal of Solar Energy Engineering, 142(2). https://doi.org/10.1115/1.4045313 CR - Pottler, K., Sippel, C. M., Beck, A., & Fricke, J. (1999). Optimized finned absorber geometries for solar air heating collectors. Solar Energy, 67(1-3), 35-52. https://doi.org/10.1016/S0038-092X(00)00036-0 CR - Rahman, S., Sarker, M. R. I., Mandal, S., & Beg, M. R. A. (2018). Experimental and numerical analysis of a stand-alone PV/T system to improve its efficiency. Journal of Fundamentals of Renewable Energy and Applications, 1, 28-33. https://doi.org/10.4172/2090-4541.1000253 CR - Richert, T., Riffelmann, K., & Nava, P. (2015). The influence of solar field inlet and outlet temperature on the cost of electricity in a molten salt parabolic trough power plant. Energy Procedia, 69, 1143-1151. https://doi.org/10.1016/j.egypro.2015.03.184 CR - Ritchie, H., & Roser, M. (2020). CO₂ and greenhouse gas emissions. Our World In Data. https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions CR - Rizk, J., & Chaiko, Y. (2008). Solar tracking system: More efficient use of solar panels. World Academy of Science, Engineering and Technology, 41(2008), 313-315. https://www.semanticscholar.org/paper/Solar-Tracking-System%3A-More-Efficient-Use-of-Solar-Rizk-Chaiko/5594b5bbb72021eafd8a96452b6bb551d8208094 CR - Sekhar, Y. R., Sharma, K. V., & Rao, M. B. (2009). Evaluation of heat loss coefficients in solar flat plate collectors. ARPN Journal of Engineering and Applied Sciences, 4(5), 15-19. https://www.semanticscholar.org/paper/Evaluation-Of-Heat-Loss-Coefficients-In-Solar-Flat-Sekhar-Sharma/d2f0a067b0ade05d73ab14164400eb7fba3a9d5f CR - Song, Z., Ji, J., Zhang, Y., Cai, J., & Li, Z. (2021). Experimental and numerical investigation on a photovoltaic heat pump with two condensers: A micro-channel heat pipe/thermoelectric generator condenser and a submerged coil condenser. Energy, 122525. https://doi.org/10.1016/j.energy.2021.122525 CR - Tripanagnostopoulos, Y., Nousia, T. H., Souliotis, M., & Yianoulis, P. (2002). Hybrid photovoltaic/thermal solar systems. Solar Energy, 72(3), 217-234. https://doi.org/10.1016/S0038-092X(01)00096-2 CR - Yakut, R. (2021). A numerical study on determining the effect of original evaporator design on DX-SAHP system performance. European Journal of Science and Technology(28), 1052-1055. https://doi.org/10.31590/ejosat.1012486 CR - Yang, Y.-T., & Peng, H.-S. (2009). Numerical study of the heat sink with un-uniform fin width designs. International Journal of Heat and Mass Transfer, 52(15-16), 3473-3480. https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.042 CR - Zadeh, P. M., Sokhansefat, T., Kasaeian, A. B., Kowsary, F., & Akbarzadeh, A. (2015). Hybrid optimization algorithm for thermal analysis in a solar parabolic trough collector based on nanofluid. Energy, 82, 857-864. https://doi.org/10.1016/j.energy.2015.01.096 CR - Zhang, X., Zhao, X., Shen, J., Xu, J., & Yu, X. (2014). Dynamic performance of a novel solar photovoltaic/loop-heat-pipe heat pump system. Applied Energy, 114, 335-352. https://doi.org/10.1016/j.apenergy.2013.09.063 CR - Zhou, J., Zhao, X., Ma, X., Qiu, Z., Ji, J., Du, Z., & Yu, M. (2016). Experimental investigation of a solar driven direct-expansion heat pump system employing the novel PV/micro-channels-evaporator modules. Applied Energy, 178, 484-495. https://doi.org/10.1016/j.apenergy.2016.06.063 CR - Zondag, H. A. (2008). Flat-plate PV-Thermal collectors and systems: A review. Renewable and Sustainable Energy Reviews, 12(4), 891-959. https://doi.org/10.1016/j.rser.2005.12.012 CR - Zwalnan, S. J., Caleb, N. N., Mangai, M. M., & Sanda, N. Y. (2021). Comparative analysis of thermal performance of a solar water heating system based on the serpentine and risers-head configurations. Journal of Renewable Energy and Environment, 8(2), 21-30. https://doi.org/10.30501/jree.2020.251190.1150 UR - https://doi.org/10.17714/gumusfenbil.1101110 L1 - https://dergipark.org.tr/en/download/article-file/2364729 ER -