TY - JOUR T1 - Ratlarda Oluşturulan Kritik Boyutlu Kalvaryal Defektlerde Bakteriyel Selüloz Temelli Hidroksiapatit (BS-HAp) Nanokompozitinin Kemik Oluşumu Üzerine Etkisi TT - The Effect of Bacterial Cellulose Based Hydroxyapatite (BC-HAp) Nanocomposite on Bone Formation in Critical Sized Calvarial Defects in Rats AU - Lektemür Alpan, Aysan AU - Dogan, Nazime AU - Denizli, Tuğba Hilal AU - Özmen, Özlem PY - 2022 DA - December DO - 10.7212/karaelmasfen.1103092 JF - Karaelmas Fen ve Mühendislik Dergisi PB - Zonguldak Bulent Ecevit University WT - DergiPark SN - 2146-7277 SP - 242 EP - 250 VL - 12 IS - 2 LA - tr AB - Bu çalışmada, sıçanlarda kritik boyuttaki kalvaryal defektlerde bakteriyel selüloz-hidroksiapatit (BS-HAp) kompozitinin kemik rejenerasyonundaki potansiyelinin değerlendirilmesi amaçlanmıştır. Komagataibacter xylinus S4 izolatından elde edilen BS-HAp taramalı elektron mikroskobunda (SEM) incelenerek içeriğindeki Ca ve P iyonlarının yoğunluğu tespit edilmiştir. Ratlarda oluşturulan kalvaryal defektlere elde edilen BS-HAp dondurulup kurutularak uygulanmıştır. 4. ve 8. haftanın sonunda alınan örnekler histopatolojik olarak incelenmiştir. SEM sonuçlarına göre BS lifleri, ince demetler halinde olup fibril çapı 42,11olarak tespit edilmiştir. HAp, BS pelikülüne dahil olarak içeriğinde yüksek oranda Ca ve P elementleri saptanmıştır. Yapılan in-vivo deneylerin sonunda 4. Haftada herhangi bir kemik oluşumuna rastlanmamıştır. BS-HAp grubunda düzgün bağ doku oluşumu gözlenmiştir. 8. haftanın sonunda BS-HAp grubunda biyomateryal komşuluğunda yeni kemik alanları izlenmiştir. Komagataibacter xylinus S4 izolatından elde edilen BS-HAp biyomateryal olarak kullanıldığında 8. haftada yeni kemik oluşumunu indüklemiştir KW - Bakteriyel selüloz KW - biyomateryal KW - hidroksiapatit KW - kemik rejenerasyonu KW - Bacterial cellulose KW - Biomaterial KW - Hydroxyapatite KW - Bone regeneration N2 - In this study, it was aimed to evaluate the potential bone regeneration effect of bacterial cellulose-hydroxyapatite (BC-HAp) composite in calvarial defects of critical size in rats. BC-HAp obtained from Komagataibacter xylinus S4 isolate was examined under a scanning electron microscope (SEM), and the concentration of Ca and P ions in its content was determined. BC-HAp obtained from calvarial defects in rats was freeze-dried and applied. Samples taken at the end of the 4th and 8th weeks were examined histopathologically. According to SEM results, BC fibers were in thin bundles and the fibril diameter was determined as 42.11. As HAp is included in the BC pellicle, high levels of Ca and P elements were detected in its content. At the end of the in-vivo experiments, no bone formation was found in the 4th week. Uniform connective tissue formation was observed in the BS-HAp group. At the end of the 8th week, new bone areas were observed in the BS-HAp group adjacent to the biomaterial. When BS-HAp obtained from Komagataibacter xylinus S4 isolate was used as a biomaterial, it induced new bone formation at 8 weeks CR - Ahn, S. J., Shin, Y. M., Kim, S. E., Jeong, S. I., Jeong, J. O., Park, J. S., Gwon, H. J., Seo, D. E., Nho, Y. C., Kang, S. S., Kim, C. Y., Huh, J. B., and Lim, Y. M. 2015. Characterization of hydroxyapatite-coated bacterial cellulose scaffold for bone tissue engineering. Biotechnol. Bioprocess Eng 20(5): 948-955. DOI:10.1007/s12257-015-0176-z CR - Alpan, A. L., Toker, H., and Ozer, H. 2016. Ozone Therapy Enhances Osseous Healing in Rats With Diabetes With Calvarial Defects: A Morphometric and Immunohistochemical Study. J Periodontol, 87(8): 982-989. DOI:10.1902/ jop.2016.160009 CR - Araujo, A. S., Fernandes, A. B., Maciel, J. V., Netto Jde, N., and Bolognese, A. M. 2015. New methodology for evaluating osteoclastic activity induced by orthodontic load. J Appl Oral Sci, 23(1): 19-25. DOI:10.1590/1678-775720140351 CR - Atila, D., Karatas, A., Evcin, A., Keskin, D., and Tezcaner, A. 2019. Bacterial cellulose-reinforced boron-doped hydroxyapatite/ gelatin scaffolds for bone tissue engineering. Cellulose, 26(18): 9765-9785. DOI:10.1007/s10570-019-02741-1 CR - Basu, P., Saha, N., Alexandrova, R., Andonova-Lilova, B., Georgieva, M., Miloshev, G., and Saha, P. 2018. Biocompatibility and Biological Efficiency of Inorganic Calcium Filled Bacterial Cellulose Based Hydrogel Scaffolds for Bone Bioengineering. Int J Mol Sci, 19(12). DOI:10.3390/ ijms19123980 CR - Boccaccini, A. R., and Blaker, J. J. 2005. Bioactive composite materials for tissue engineering scaffolds. Expert Rev Med Devices, 2(3): 303-317. DOI:10.1586/17434440.2.3.303 CR - Bramhill, J., Ross, S., and Ross, G. 2017. Bioactive Nanocomposites for Tissue Repair and Regeneration: A Review. Int J Environ Res Public Health, 14(1). DOI:10.3390/ ijerph14010066 CR - Cakar, F., Kati, A., Ozer, I., Demirbag, D. D., Sahin, F., and Aytekin, A. O. 2014. Newly developed medium and strategy for bacterial cellulose production. Biochem. Eng. J., 92: 35-40. DOI:10.1016/j.bej.2014.07.002 CR - Czaja, W., Krystynowicz, A., Bielecki, S., and Brown, R. M., Jr. 2006. Microbial cellulose--the natural power to heal wounds. Biomaterials, 27(2): 145-151. DOI:10.1016/j. biomaterials.2005.07.035 CR - de Oliveira Barud, H. G., da Silva, R. R., da Silva Barud, H., Tercjak, A., Gutierrez, J., Lustri, W. R., de Oliveira, O. B. J., and Ribeiro, S. J. L. 2016. A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose. Carbohydr Polym, 153: 406-420. DOI:10.1016/j. carbpol.2016.07.059 CR - Favi, P. M., Ospina, S. P., Kachole, M., Gao, M., Atehortua, L., and Webster, T. J. 2016. Preparation and characterization of biodegradable nano hydroxyapatite-bacterial cellulose composites with well-defined honeycomb pore arrays for bone tissue engineering applications. Cellulose, 23(2): 1263-1282. DOI:10.1007/s10570-016-0867-4 CR - Fontana, J. D., Desouza, A. M., Fontana, C. K., Torriani, I. L., Moreschi, J. C., Gallotti, B. J., Desouza, S. J., Narcisco, G. P., Bichara, J. A., and Farah, L. F. X. 1990. Acetobacter Cellulose Pellicle as a Temporary Skin Substitute. Appl. Biochem. Biotechnol., 24(5): 253-264. DOI:10.1007/Bf02920250 CR - Gayathry, G., and Gopalaswamy, G. 2014. Production and characterisation of microbial cellulosic fibre from Acetobacter xylinum. IJFTR, 39(1):93-96. CR - Grande, C. J., Torres, F. G., Gomez, C. M., and Bano, M. C. 2009. Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater., 5(5):1605-1615. DOI:10.1016/j.actbio.2009.01.022 CR - Hong L., W. Y. L., Jia S.R., Huang Y., Gao C., Wan Y.Z. 2006. Hydroxyapatite/bacterial cellulose composites synthesized via a biomimetic route. Mater. Lett., 60(13-14):1710-1713. DOI:10.1016/j.matlet.2005.12.004 CR - Jiang, P., Ran, J., Yan, P., Zheng, L., Shen, X., and Tong, H. 2018. Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/ nano-hydroxyapatite framework and silk fibroin reinforcing phase. J Biomater Sci Polym Ed, 29(2): 107-124. DOI:10.1080/ 09205063.2017.1403149 CR - Jung, H. I., Lee, O. M., Jeong, J. H., Jeon, Y. D., Park, K. H., Kim, H. S., An, W. G., and Son, H. J. 2010. Production and Characterization of Cellulose by Acetobacter sp V6 Using a Cost-Effective Molasses-Corn Steep Liquor Medium. Appl. Biochem. Biotechnol., 162(2): 486-497. DOI:10.1007/s12010- 009-8759-9 CR - Jung, I. H., Lim, H. C., Lee, E. U., Lee, J. S., Jung, U. W., & Choi, S. H. 2015. Comparative analysis of carrier systems for delivering bone morphogenetic proteins. J Periodontal Implant Sci, 45(4):136-144. DOI:10.5051/jpis.2015.45.4.136 CR - Laurencin, C., Khan, Y., and El-Amin, S. F. 2006. Bone graft substitutes. Expert Rev Med Devices, 3(1): 49-57. DOI:10.1586/17434440.3.1.49 CR - Lee, S. H., Lim, Y. M., Jeong, S. I., An, S. J., Kang, S. S., Jeong, C. M., and Huh, J. B. 2015. The effect of bacterial cellulose membrane compared with collagen membrane on guided bone regeneration. J Adv Prosthodont, 7(6): 484-495. DOI:10.4047/ jap.2015.7.6.484 CR - Liu, F., Wei, B., Xu, X., Ma, B., Zhang, S., Duan, J., Kong, Y., Yang, H., Sang, Y., Wang, S., Tang, W., Liu, C., and Liu, H. 2021. Nanocellulose-Reinforced Hydroxyapatite Nanobelt Membrane as a Stem Cell Multi-Lineage Differentiation Platform for Biomimetic Construction of Bioactive 3D Osteoid Tissue In Vitro. Adv Healthc Mater, 10(8), e2001851. DOI:10.1002/adhm.202001851 CR - Moore, W. R., Graves, S. E., and Bain, G. I. 2001. Synthetic bone graft substitutes. ANZ J Surg, 71(6): 354-361. CR - Muthukumar, T., Aravinthan, A., Sharmila, J., Kim, N. S., and Kim, J. H. 2016. Collagen/chitosan porous bone tissue engineering composite scaffold incorporated with Ginseng compound K. Carbohydr Polym, 152: 566-574. DOI:10.1016/j. carbpol.2016.07.003 CR - Nandi, S. K., Roy, S., Mukherjee, P., Kundu, B., De, D. K., and Basu, D. 2010. Orthopaedic applications of bone graft and graft substitutes: a review. Indian J Med Res, 132: 15-30. CR - Pigossi, S. C., de Oliveira, G. J. P. L., Finoti, L. S., Nepomuceno, R., Spolidorio, L. C., Rossa, C., Ribeiro, S. J. L., Saska, S., and Scarel-Caminaga, R. M. 2015. Bacterial cellulosehydroxyapatite composites with osteogenic growth peptide (OGP) or pentapeptide OGP on bone regeneration in criticalsize calvarial defect model. J Biomed Mater Res A , 103(10): 3397-3406. DOI:10.1002/jbm.a.35472 CR - Svensson, A., Nicklasson, E., Harrah, T., Panilaitis, B., Kaplan, D. L., Brittberg, M., and Gatenholm, P. 2005. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials, 26(4): 419-431. DOI:10.1016/j. biomaterials.2004.02.049 CR - Tas, A. C. 2000. Synthesis of biomimetic Ca-hydroxyapatite powders at 37 degrees C in synthetic body fluids. Biomaterials, 21(14): 1429-1438. CR - Tolstunov, L., Hamrick, J. F. E., Broumand, V., Shilo, D., and Rachmiel, A. 2019. Bone Augmentation Techniques for Horizontal and Vertical Alveolar Ridge Deficiency in Oral Implantology. Oral Maxillofac Surg Clin North Am, 31(2): 163- 191. DOI:10.1016/j.coms.2019.01.005 CR - Top, B., Uguzdogan, E., Dogan, N. M., Arslan, S., Bozbeyoglu, N. N., Kabalay, B. 2021. Production and Characterization of Bacterial Cellulose from Komagataeibacter xylinus Isolated from Home-made Turkish Wine Vinegar. Cellulose Chem Technol, 2: 13-17. CR - Torres, F. G., Arroyo, J. J., and Troncoso, O. P. 2019. Bacterial cellulose nanocomposites: An all-nano type of material. Mater Sci Eng C Mater Biol Appl, 98: 1277-1293. DOI:10.1016/j. msec.2019.01.064 CR - Vadaye Kheiry, E., Parivar, K., Baharara, J., Fazly Bazzaz, B. S., and Iranbakhsh, A. 2018. The osteogenesis of bacterial cellulose scaffold loaded with fisetin. Iran J Basic Med Sci, 21(9): 965-971. DOI:10.22038/IJBMS.2018.25465.6296 CR - Vazquez, A., Foresti, M. L., Cerrutti, P., and Galvagno, M. 2013. Bacterial Cellulose from Simple and Low Cost Production Media by Gluconacetobacter xylinus. J. Polym. Environ., 2013. 21(2): 545-554. DOI:10.1007/s10924-012-0541-3 CR - Wahid, F., Huang, L. H., Zhao, X. Q., Li, W. C., Wang, Y. Y., Jia, S. R., and Zhong, C. 2021. Bacterial cellulose and its potential for biomedical applications. Biotechnol Adv, 53, 107856. DOI:10.1016/j.biotechadv.2021.107856 CR - Wang, H., Li, Y., Zuo, Y., Li, J., Ma, S., and Cheng, L. 2007. Biocompatibility and osteogenesis of biomimetic nanohydroxyapatite/ polyamide composite scaffolds for bone tissue engineering. Biomaterials, 28(22): 3338-3348. DOI:10.1016/j. biomaterials.2007.04.014 CR - Wang, S. S., Han, Y. H., Chen, J. L., Zhang, D. C., Shi, X. X., Ye, Y. X., Chen, D. L., and Li, M. 2018. Insights into Bacterial Cellulose Biosynthesis from Different Carbon Sources and the Associated Biochemical Transformation Pathways in Komagataeibacter sp. W1. Polymers (Basel), 10(9). DOI:10.3390/polym10090963 UR - https://doi.org/10.7212/karaelmasfen.1103092 L1 - https://dergipark.org.tr/en/download/article-file/2372801 ER -