TY - JOUR T1 - Production and Characterization of Bilayer Tissue Scaffolds Prepared with Different Alginate-Salts and Fibroin AU - Emin, Nuray AU - Çelik, Özge AU - Mohamed, Salma A. Taher PY - 2022 DA - June DO - 10.54287/gujsa.1107158 JF - Gazi University Journal of Science Part A: Engineering and Innovation JO - GU J Sci, Part A PB - Gazi University WT - DergiPark SN - 2147-9542 SP - 120 EP - 135 VL - 9 IS - 2 LA - en AB - The presented study aimed to design and characterize bilayer Alginate/Fibroin scaffolds to provide faster and higher quality treatment of skin tissue losses with tissue engineering approach. In this context, it was tried to form the dermis and epidermis layers with alginate salts (sodium and calcium) and fibroin with a biomimetic approach, and it was aimed to determine the most suitable alginate salt-fibroin composite scaffold by trying different production methods. The optimum design was determined by macroscopic measurement and dimensional analysis of the scaffolds produced by four different methods and their chemical structures were controlled with FTIR. Among the produced scaffolds, calcium alginate/fibroin (CaAlg/Fb) scaffolds were determined to have the most suitable morphological and chemical structure. With further characterization, the pore distribution and size were examined by SEM analysis and it was determined that surface pore diameters vary from 30 µm to 300 µm which are suitable for cell settlement. The thermal stability of the structure was determined by thermal gravimetry, and the degradation rate was calculated from the thermograms. According to the TG analysis, decomposition of the CaAlg/Fb scaffolds occurs much faster with temperature than homo-biopolymeric (CaAlg and Fb) structures. As a result, it was found that bilayer CaAlg/Fb scaffolds were capable of forming full-thickness dermal and/or also osteochondral wound dressings both morphologically and structurally. It is recommended to perform the tissue forming ability of this scaffold structure by performing advanced biological analyzes. KW - Silk Fibroin KW - Alginate KW - Tissue Scaffold KW - Biomimetic Patch KW - Lyophilization CR - Amiraliyan, N., Nouri, M., & Haghighat Kish, M. (2010). Structural characterization and mechanical properties of electrospun silk fibroin nanofiber mats. Polymer Science Series A, 52(4), 407-412. doi:10.1134/S0965545X10040097 CR - Bhattacharjee, M., Schultz-Thater, E., Trella, E., Miot, S., Das, S., Loparic, M., Ray, A. R., Martin, I., Spagnoli, G. C., & Ghosh, S. (2013). The role of 3D structure and protein conformation on the innate and adaptive immune responses to silk-based biomaterials. Biomaterials, 34(33), 8161-8171. doi:10.1016/j.biomaterials.2013.07.018 CR - Chen, F.-M., & Liu, X. (2016). Advancing biomaterials of human origin for tissue engineering. Progress in Polymer Science, 53, 86-168. doi:10.1016/j.progpolymsci.2015.02.004 CR - Cheng, Y., Koh, L.-D., Li, D., Ji, B., Han, M.-Y., & Zhang, Y.-W. (2014). On the strength of β-sheet crystallites of Bombyx mori silk fibroin. Journal of the Royal Society Interface, 11(96), 20140305. doi:10.1098/rsif.2014.0305 CR - Clark, R. A. F., Ghosh, K., & Tonnesen, M. G. (2007). Tissue engineering for cutaneous wounds. Journal of Investigative Dermatology, 127(5), 1018-1029. doi:10.1038/sj.jid.5700715 CR - Coats, A. W., & Redfern, J. P. (1963). Thermogravimetric analysis. A review. Analyst, 88(1053), 906-924. doi:10.1039/AN9638800906 CR - Çakir, B., & Yeğen, B. Ç. (2004). Systemic responses to burn injury. Turkish Journal of Medical Sciences, 34(4), 215-226. CR - Freed, L. E., Marquis, J. C., Langer, R., Vunjak‐Novakovic, G., & Emmanual, J. (1994). Composition of cell‐polymer cartilage implants. Biotechnology and Bioengineering, 43(7), 605-614. doi:10.1002/bit.260430710 CR - Ghezzi, C. E., Marelli, B., Donelli, I., Alessandrino, A., Freddi, G., & Nazhat, S. N. (2014). The role of physiological mechanical cues on mesenchymal stem cell differentiation in an airway tract-like dense collagen–silk fibroin construct. Biomaterials, 35(24), 6236-6247. doi:10.1016/j.biomaterials.2014.04.040 CR - Griffon, D. J., Sedighi, M. R., Schaeffer, D. V., Eurell, J. A., & Johnson, A. L. (2006). Chitosan scaffolds: interconnective pore size and cartilage engineering. Acta Biomaterialia, 2(3), 313-320. doi:10.1016/j.actbio.2005.12.007 CR - Hardy, J. G., & Scheibel, T. R. (2010). Composite materials based on silk proteins. Progress in Polymer Science, 35(9), 1093-1115. doi:10.1016/j.progpolymsci.2010.04.005 CR - Hofmann, S., Stok, K. S., Kohler, T., Meinel, A. J., & Müller, R. (2014). Effect of sterilization on structural and material properties of 3-D silk fibroin scaffolds. Acta Biomaterialia, 10(1), 308-317. doi:10.1016/j.actbio.2013.08.035 CR - Hu, K., Hu, M., Xiao, Y., Cui, Y., Yan, J., Yang, G., Zhang, F., Lin, G., Yi, H., Han, L., Li, L., Wei, Y., & Cui, F. (2021). Preparation recombination human‐like collagen/fibroin scaffold and promoting the cell compatibility with osteoblasts. Journal of Biomedical Materials Research Part A, 109(3), 346-353. doi:10.1002/jbm.a.37027 CR - Hu, X., Kaplan, D., & Cebe, P. (2006). Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy. Macromolecules, 39(18), 6161-6170. doi:10.1021/ma0610109 CR - Hunt, N. C., Shelton, R. M., & Grover, L. (2009). An alginate hydrogel matrix for the localised delivery of a fibroblast/keratinocyte co‐culture. Biotechnology Journal, 4(5), 730-737. doi:10.1002/biot.200800292 CR - Jaramillo-Quiceno, N., Álvarez-López, C., & Restrepo-Osorio, A. (2017). Structural and thermal properties of silk fibroin films obtained from cocoon and waste silk fibers as raw materials. Procedia Engineering, 200, 384-388. doi:10.1016/j.proeng.2017.07.054 CR - Ju, H. W., Lee, O. J., Moon, B. M., Sheikh, F. A., Lee, J. M., Kim, J.-H., Park, H. J., Kim, D. W., Lee, M. C., Kim, S. H., Park, C. H., & Lee, H. R. (2014). Silk fibroin based hydrogel for regeneration of burn induced wounds. Tissue Engineering and Regenerative Medicine, 11(3), 203-210. doi:10.1007/s13770-014-0010-2 CR - Kalia, S., & Avérous, L. (2011). Biopolymers: biomedical and environmental applications (Vol. 70). John Wiley & Sons. CR - Kanitakis, J. (2002). Anatomy, histology and immunohistochemistry of normal human skin. European Journal of Dermatology, 12(4), 390-401. CR - Knill, C. J., Kennedy, J. F., Mistry, J., Miraftab, M., Smart, G., Groocock, M. R., & Williams, H. J. (2004). Alginate fibres modified with unhydrolysed and hydrolysed chitosans for wound dressings. Carbohydrate Polymers, 55(1), 65-76. doi:10.1016/j.carbpol.2003.08.004 CR - Loh, Q. L., & Choong, C. (2013). Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Engineering Part B: Reviews, 19(6), 485-502. doi:10.1089/ten.teb.2012.0437 CR - Lu, Q., Zhang, B., Li, M., Zuo, B., Kaplan, D. L., Huang, Y., & Zhu, H. (2011). Degradation mechanism and control of silk fibroin. Biomacromolecules, 12(4), 1080-1086. doi:10.1021/bm101422j CR - MacNeil, S. (2007). Progress and opportunities for tissue-engineered skin. Nature, 445(7130), 874-880. doi:10.1038/nature05664 CR - Mirahmadi, F., Tafazzoli-Shadpour, M., Shokrgozar, M. A., & Bonakdar, S. (2013). Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering. Materials Science and Engineering: C, 33(8), 4786-4794. doi:10.1016/j.msec.2013.07.043 CR - Nelson, D. L., & Cox, M. M. (2013). Lehninger Principles of Biochemistry (Y. M. Elçin, Ed. & Trans. from 5th Ed.). Palme. (Original work published 2008). CR - Pamuk, F. (2011). Biyokimya. Gazi Kitabevi. CR - Park, D. H., Choi, W. S., Yoon, S. H., Shim, J. S., & Song, C. H. (2007). A developmental study of artificial skin using the alginate dermal substrate. Key Engineering Materials, 342-343, 125-128. doi:10.4028/www.scientific.net/KEM.342-343.125 CR - Peretz, S. (2004). Interaction of alginate with metal ions, cationic surfactants and cationic dyes. Rom. Journal. Phys., 49(9-10), 857-865. CR - Porter, D., & Vollrath, F. (2009). Silk as a biomimetic ideal for structural polymers. Advanced Materials, 21(4), 487-492. doi:10.1002/adma.200801332 CR - Priya, S. G., Jungvid, H., & Kumar, A. (2008). Skin tissue engineering for tissue repair and regeneration. Tissue Engineering Part B: Reviews, 14(1), 105-118. doi:10.1089/teb.2007.0318 CR - Qi, Y., Wang, H., Wei, K., Yang, Y., Zheng, R.-Y., Kim, I. S., & Zhang, K.-Q. (2017). A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures. International Journal of Molecular Sciences, 18(3), 237. doi:10.3390/ijms18030237 CR - Reinholz, G. G., Lu, L., Saris, D. B. F., Yaszemski, M. J., & O’driscoll, S. W. (2004). Animal models for cartilage reconstruction. Biomaterials, 25(9), 1511-1521. doi:10.1016/S0142-9612(03)00498-8 CR - Rujiravanit, R., Kruaykitanon, S., Jamieson, A. M., & Tokura, S. (2003). Preparation of crosslinked chitosan/silk fibroin blend films for drug delivery system. Macromolecular Bioscience, 3(10), 604-611. doi:10.1002/mabi.200300027 CR - Shen, Y., Wang, X., Li, B., Guo, Y., & Dong, K. (2022). Development of silk fibroin‑sodium alginate scaffold loaded silk fibroin nanoparticles for hemostasis and cell adhesion. International Journal of Biological Macromolecules, 211, 514-523. doi:10.1016/j.ijbiomac.2022.05.064 CR - Sittinger, M., Bujia, J., Rotter, N., Reitzel, D., Minuth, W. W., & Burmester, G. R. (1996). Tissue engineering and autologous transplant formation: practical approaches with resorbable biomaterials and new cell culture techniques. Biomaterials, 17(3), 237-242. doi:10.1016/0142-9612(96)85561-X CR - Summer, G. J., Puntillo, K. A., Miaskowski, C., Green, P. G., & Levine, J. D. (2007). Burn injury pain: the continuing challenge. The Journal of Pain, 8(7), 533-548. doi:10.1016/j.jpain.2007.02.426 CR - Toon, M. H., Maybauer, D. M., Arceneaux, L. L., Fraser, J. F., Meyer, W., Runge, A., & Maybauer, M. O. (2011). Children with burn injuries-assessment of trauma, neglect, violence and abuse. Journal of Injury & Violence Research, 3(2), 98-110. doi:10.5249/jivr.v3i2.91 CR - Um, I. C., Kweon, H., Park, Y. H., & Hudson, S. (2001). Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid. International Journal of Biological Macromolecules, 29(2), 91-97. doi:10.1016/S0141-8130(01)00159-3 CR - Vepari, C., & Kaplan, D. L. (2007). Silk as a biomaterial. Progress in Polymer Science, 32(8-9), 991-1007. doi:10.1016/j.progpolymsci.2007.05.013 CR - Wang, X., Partlow, B., Liu, J., Zheng, Z., Su, B., Wang, Y., & Kaplan, D. L. (2015). Injectable silk-polyethylene glycol hydrogels. Acta Biomaterialia, 12, 51-61. doi:10.1016/j.actbio.2014.10.027 CR - Woo, W.-M. (2019). Skin Structure and Biology. In: C. Xu, X. Wang, & M. Pramanik (Eds.) Imaging Technologies and Transdermal Delivery in Skin Disorders (pp. 1-14). Wiley. doi:10.1002/9783527814633.ch1 CR - Xie, H., Bai, Q., Kong, F., Li, Y., Zha, X., Zhang, L., Zhao, Y., Gao, S., Li, P., & Jiang, Q. (2022). Allantoin-functionalized silk fibroin/sodium alginate transparent scaffold for cutaneous wound healing. International Journal of Biological Macromolecules, 207, 859-872. doi:10.1016/j.ijbiomac.2022.03.147 CR - Yodmuang, S., McNamara, S. L., Nover, A. B., Mandal, B. B., Agarwal, M., Kelly, T.-A. N., Chao, P.-h. G., Hung, C., Kaplan, D. L., & Vunjak-Novakovic, G. (2015). Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomaterialia, 11, 27-36. doi:10.1016/j.actbio.2014.09.032 CR - Yu, J. R., Navarro, J., Coburn, J. C., Mahadik, B., Molnar, J., Holmes IV, J. H., Nam, A. J., & Fisher, J. P. (2019). Current and future perspectives on skin tissue engineering: key features of biomedical research, translational assessment, and clinical application. Advanced Healthcare Materials, 8(5), 1801471. doi:10.1002/adhm.201801471 CR - Zhang, K. H., & Mo, X. M. (2011). Influence of Post-treatment with Methanol Vapor on the Properties of SF/P (LLA-CL) Nanofibrous Scaffolds. Advanced Materials Research, 236-238, 2221-2224. doi:10.4028/www.scientific.net/AMR.236-238.2221 CR - Zhang, T., Xiong, Q., Shan, Y., Zhang, F., & Lu, S. (2021). Porous Silk Scaffold Derived from Formic Acid: Characterization and Biocompatibility. Advances in Materials Science and Engineering, 2021, 3245587. doi:10.1155/2021/3245587 CR - Zhao, M., Qi, Z., Tao, X., Newkirk, C., Hu, X., & Lu, S. (2021). Chemical, thermal, time, and enzymatic stability of silk materials with silk i structure. International Journal of Molecular Sciences, 22(8), 4136. doi:10.3390/ijms22084136 UR - https://doi.org/10.54287/gujsa.1107158 L1 - https://dergipark.org.tr/en/download/article-file/2389301 ER -