@article{article_1112866, title={Ağ Trafiğinin Akış Tabanlı Sınıflandırılmasında Akış Sürelerinin Makine Öğrenimi Algoritmalarına Etkisi}, journal={Avrupa Bilim ve Teknoloji Dergisi}, pages={276–283}, year={2022}, DOI={10.31590/ejosat.1112866}, author={Bozkır, Ramazan and Cicioğlu, Murtaza and Toğay, Cengiz and Çalhan, Ali}, keywords={Network traffic classification, Flow-based method, Machine learning}, abstract={Günümüzde ağ trafiği verilerinin kontrol altında olması önemli bir gerekliliktir. Ağ operasyonlarının başarısı, belirlenen hedeflere yönelik ağ trafiği sınıflandırılmasının doğru ve performanslı bir şe kilde gerçekleştirilmesine bağlıdır. Ağ trafiği sınıflandırılmasında sıklıkla istatiksel bir yaklaşım olan akış tabanlı yöntemler kullanılmaktadır. Bu çalışmada, farklı akış sürelerinde oluşan ağ akışlarının makine öğrenimi algoritmaları üzerindeki etkileri incelemiştir. AdaBoost, DecisionTree ve RandomForest makine öğrenmesi algoritmalarının ağ trafiği sınıflandırılmasında akış tabanlı yöntem ile farklı akış sürelerinde sınıflandırma performansları analiz edilmiştir. Elde edilen sonuçlara göre makine öğrenmesi algoritmalarının ağ akışı süresinden önemli ölçüde etkilendikleri tespit edilmiştir.}, number={36}, publisher={Osman SAĞDIÇ}