TY - JOUR T1 - Investigation of Current, Temperature, and Concentration Distribution of a Solid Oxide Fuel Cell with Mathematical Modelling Approach AU - Delibaş, Nagihan AU - Rezvan, S. Mehdi AU - Ahangari, Mohammad AU - Bahrami Gharamaleki, Soudabeh AU - Moradi, Asghar AU - Niaie, Aligholi PY - 2023 DA - March DO - 10.28979/jarnas.1117590 JF - Journal of Advanced Research in Natural and Applied Sciences JO - JARNAS PB - Çanakkale Onsekiz Mart University WT - DergiPark SN - 2757-5195 SP - 237 EP - 250 VL - 9 IS - 1 LA - en AB - The usage of environment-friendly energy converter devices is getting more and more attention as a result of environmental crises and regulations. SOFCs are among the highly efficient chemical to electrical energy converters. Thus, their effectiveness is a significant issue to improve. To increase the efficiency of SOFCs, their properties should be investigated. However, it is costly and time-consuming to test all the important characteristics of a solid oxide fuel cell by experimental methods. Computational methods can contribute to evaluate the influence of each parameter on the performance of the fuel cell. In this paper, a 3D mathematical model of a SOFC is presented. The model can describe the fuel cell’s temperature, the concentration of material, and current distribution inside the cell. Also, the influence of the flow pattern (co-current and counter-current) on the distribution plots and performance of the solid oxide fuel cell is investigated. The results demonstrate that the distribution of the current, concentration, and temperature is firmly related and wherever the concentration of reactants is higher, the temperature and current increase too. Also, the plots of power density and cell potential versus current were consistent with the results of the literature. Moreover, the comparison between two types of flow patterns shows that there is no significant variation when the type of current changes from counter to co-current. However, the performance of the SOFC is mildly better with a co-current flow pattern. KW - Flow pattern KW - Fuel Cell KW - Mathematical Modeling KW - SOFC CR - Abdalla, A. M., Hossain, S., Azad, A. T., Petra, P. M. I., Begum, F., Eriksson, S. G., & Azad, A. K. (2018). Nanomaterials for solid oxide fuel cells: A review. Renewable and sustainable energy reviews, 82, 353-368. DOI: https://doi.org/10.1016/j.rser.2017.09.046 CR - Ahmad, M. Z., Ahmad, S. H., Chen, R. S., Ismail, A. F., Hazan, R., & Baharuddin, N. A. (2021). Review on recent advancement in cathode material for lower and intermediate temperature solid oxide fuel cells application. International Journal of Hydrogen Energy. DOI: https://doi.org/10.1016/j.ijhydene.2021.10.094 CR - Burnwal, S. K., Bharadwaj, S., & Kistaiah, P. (2016). Review on MIEC cathode materials for solid oxide fuel cells. Journal of Molecular and Engineering Materials, 4(02), 1630001. DOI: https://doi.org/10.1142/S2251237316300011 CR - Chiu, H.-C., Jang, J.-H., Yan, W.-M., Li, H.-Y., & Liao, C.-C. (2012). A three-dimensional modeling of transport phenomena of proton exchange membrane fuel cells with various flow fields. Applied energy, 96, 359-370. DOI: https://doi.org/10.1016/j.apenergy.2012.02.060 CR - DELİBAŞ, N., Gharamaleki, S. B., Mansouri, M., & NİAİE, A. Reduction of operation temperature in SOFCs utilizing perovskites. International Advanced Researches and Engineering Journal, 6(1), 56-67. DOI: https://doi.org/10.35860/iarej.972864 CR - Ferriday, T. B., & Middleton, P. H. (2021). Alkaline fuel cell technology-A review. International Journal of Hydrogen Energy, 46(35), 18489-18510. DOI: https://doi.org/10.1016/j.ijhydene.2021.02.203 CR - Hussain, S., & Yangping, L. (2020). Review of solid oxide fuel cell materials: Cathode, anode, and electrolyte. Energy Transitions, 4(2), 113-126. DOI: https://doi.org/10.1007/s41825-020-00029-8 CR - Kakac, S., Pramuanjaroenkij, A., & Zhou, X. Y. (2007). A review of numerical modeling of solid oxide fuel cells. International Journal of Hydrogen Energy, 32(7), 761-786. DOI: https://doi.org/10.1016/j.ijhydene.2006.11.028 CR - Kurahashi, N., Murase, K., & Santander, M. (2022). High-Energy Extragalactic Neutrino Astrophysics. arXiv preprint arXiv:2203.11936. DOI: https://doi.org/10.48550/arXiv.2203.11936 CR - Laosiripojana, N., Wiyaratn, W., Kiatkittipong, W., Arpornwichanop, A., Soottitantawat, A., & Assabumrungrat, S. (2009). Reviews on solid oxide fuel cell technology. Engineering Journal, 13(1), 65-84. DOI: https://doi.org/10.4186/ej.2009.13.1.65 CR - Li, P.-W., & Suzuki, K. (2004). Numerical modeling and performance study of a tubular SOFC. Journal of the Electrochemical Society, 151(4), A548. DOI: https://doi.org/10.1149/1.1647569 CR - Ranasinghe, S. N., & Middleton, P. H. (2017). Modelling of single cell solid oxide fuel cells using COMSOL multiphysics. Paper presented at the 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe). DOI: https://doi.org/ 10.1109/EEEIC.2017.7977790 CR - Shaari, N., Kamarudin, S. K., Bahru, R., Osman, S. H., & Md Ishak, N. A. I. (2021). Progress and challenges: Review for direct liquid fuel cell. International Journal of Energy Research, 45(5), 6644-6688. DOI: https://doi.org/10.1002/er.6353 CR - Shu, L., Sunarso, J., Hashim, S. S., Mao, J., Zhou, W., & Liang, F. (2019). Advanced perovskite anodes for solid oxide fuel cells: A review. International Journal of Hydrogen Energy, 44(59), 31275-31304. DOI: https://doi.org/10.1016/j.ijhydene.2019.09.220 CR - Singh, M., Zappa, D., & Comini, E. (2021). Solid oxide fuel cell: Decade of progress, future perspectives and challenges. International Journal of Hydrogen Energy, 46(54), 27643-27674. DOI: https://doi.org/10.1016/j.ijhydene.2021.06.020 CR - Stambouli, A. B., & Traversa, E. (2002). Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renewable and sustainable energy reviews, 6(5), 433-455. DOI: https://doi.org/10.1016/S1364-0321(02)00014-X CR - Tseronis, K., Bonis, I., Kookos, I., & Theodoropoulos, C. (2012). Parametric and transient analysis of non-isothermal, planar solid oxide fuel cells. International Journal of Hydrogen Energy, 37(1), 530-547. DOI: https://doi.org/10.1016/j.ijhydene.2011.09.062 CR - Xia, C., Rauch, W., Wellborn, W., & Liu, M. (2002). Functionally graded cathodes for honeycomb solid oxide fuel cells. Electrochemical and solid-state letters, 5(10), A217. DOI: https://doi.org/10.1149/1.1503203 Ilbas, M., & Kumuk, B. (2019). Numerical modelling of a cathode-supported solid oxide fuel cell (SOFC) in comparison with an electrolyte-supported model. Journal of the Energy Institute, 92(3), 682-692. DOI: https://doi.org/10.1016/j.joei.2018.03.004 CR - Mohammad Ebrahimi, I. (2017). Three-dimensional modeling of transport phenomena in a planar anode-supported solid oxide fuel cell. Iranian Journal of Hydrogen & Fuel Cell, 4(1), 37-52. DOI: http://doi.org/ 10.22104/IJHFC.2017.2342.1144 CR - Tseronis, K., Bonis, I., Kookos, I., & Theodoropoulos, C. (2012). Parametric and transient analysis of non-isothermal, planar solid oxide fuel cells. International Journal of Hydrogen Energy, 37(1), 530-547. DOI: https://doi.org/10.1016/j.ijhydene.2011.09.062 CR - Yaoxuan, Q., Cheng, F., & Kening, S. (2021). Multiphysics simulation of a solid oxide fuel cell based on COMSOL method. Paper presented at the E3S Web of Conferences. DOI: https://doi.org/10.1051/e3sconf/202124501005 UR - https://doi.org/10.28979/jarnas.1117590 L1 - https://dergipark.org.tr/en/download/article-file/2431745 ER -