@article{article_1117976, title={TIBBİ VERİ KÜMELERİNDE GENETİK ALGORİTMALARLA ÖZELLİK SEÇİMİ VE SINIFLANDIRMA BAŞARIMINA ETKİSİ}, journal={Mühendislik Bilimleri ve Tasarım Dergisi}, volume={11}, pages={68–80}, year={2023}, DOI={10.21923/jesd.1117976}, author={Deperlioğlu, Ömer}, keywords={Future Selection, Genetic Algorithms, Medical Data Set, Futures Subset, Medical Classification}, abstract={Günümüzde çok büyük boyuttaki tıbbi veri tabanlarından, klinik karar destek sistemlerinin faydalı bilgiler elde etmesi oldukça zorlaşmıştır. Genetik algoritmalar (GA) yaygın olarak kullanılan bir özellik seçme yöntemidir ve en iyi çözümleri verebilir. Bu çalışmada, çok sayıda karmaşık verilere sahip olan tıbbi verilerden özellik seçimi yapmak ve en uygun özellik alt kümesini oluşturarak sınıflandırma başarısını artırmak için GA içeren bir model önerilmiştir. Önerilen yöntemin performansını değerlendirmek için çalışmada en çok bilinen ve rahatlıkla ulaşılabilen 5 tıbbi veri kümesi ve 7 farklı denetimli sınıflandırma yöntemi kullanılmıştır. Her veri kümesi ile her sınıflandırıcı için ayrı ayrı özellik seçimi ve sınıflandırma uygulamaları yapılmıştır. Bu uygulamalarda elde edilen sonuçlar, önerilen yaklaşımla yapılan sınıflandırmalarda, veri kümesine bağlı olarak, Doğruluk oranında dolayısıyla makine öğrenmesi modeli performansında ortalama %2 ile %21 arasında artış sağlandığını ortaya koymuştur. Ayrıca yapılan çalışmalarda denetimli sınıflandırma algoritmalarından Rastgele Ormanın bütün veri kümelerinde diğer algoritmalardan daha iyi sonuçlar verdiği görülmekte ve tıbbi veri kümelerindeki sınıflandırma başarısı ile öne çıktığı görülmüştür.}, number={1}, publisher={Süleyman Demirel University}, organization={Yok}