TY - JOUR T1 - Nöral Doku Mühendisliği Uygulamalarına Yönelik Mikro-oluklu İpek Fibroin/Polietilen Oksit Film İskelelerin Geliştirilmesi TT - Development of Micro-grooved Silk Fibroin/Polyethylene Oxide Film Scaffolds for Neural Tissue Engineering Applications AU - Özçiçek, İlyas PY - 2022 DA - November DO - 10.31590/ejosat.1123769 JF - Avrupa Bilim ve Teknoloji Dergisi JO - EJOSAT PB - Osman SAĞDIÇ WT - DergiPark SN - 2148-2683 SP - 343 EP - 348 IS - 41 LA - tr AB - Nöral doku mühendisliği alanında, nanoteknolojinin ve biyomalzeme biliminin sunmuş olduğu yeni tekniklerle birlikte, alternatif sinir kılavuz kanalları geliştirmek için yoğun bir şekilde çalışılmaktadır. Fakat doğal ekstraselüler matriksi taklit edebilecek özellikte, intralüminal kanallı yapıda, uygun mikro/nano desenlemelere sahip, nöral hücreleri destekleyecek ve onlara kılavuzluk sağlayabilecek ideal bir nöral iskele henüz tam olarak geliştirilememiştir. Bu çalışmanın amacı; nöral doku mühendisliği uygulamalarına yönelik çeşitli kanal genişliklerine (1 µm, 5 µm ve 10 µm) sahip mikro-oluklu ipek fibroin/polietilen oksit (SF/PEO) film iskelelerin elde edilebilmesi için elektron demeti litografisi tekniğinin kullanımına ilaveten, dizayn edilen biyomalzemenin mekanik özelliğinin ve stabilitesinin geliştirilmesidir. Planlanan oluk genişliklerine başarıyla ulaşılmış olup, özellikle gluteraldehit buharına maruz bırakılan filmlerde stabilitenin optimal olarak sağlandığı gözlenmiştir. Yine yapıya PEO ilavesinin, filmlerin esnekliğini artırdığı görülmüştür. Geliştirilen biyomalzemenin, potansiyel nöral doku mühendisliği çalışmaları kapsamında; hücresel nöritlerin ve aksonların lineer hatlar boyunca ilerlemesine kılavuzluk etmesine yardımcı olabileceği ve bir sinir hasarı bölgesine implantasyonu sonrasında rejenerasyonu destekleyebileceği değerlendirilmiştir. KW - İpek fibroin KW - Nöral doku mühendisliği KW - Mikro-oluklar KW - Elektron demeti litografisi KW - Aksonal kılavuzluk N2 - In the field of neural tissue engineering, intensive work is being done to develop alternative nerve guide channels with the new techniques offered by nanotechnology and biomaterials science. However, an ideal neural scaffold capable of mimicking the natural extracellular matrix, having an intraluminal channel structure, have suitable micro/nano patterns, can support neural cells and guide them has not been fully developed yet. The aim of this study is the use of electron beam lithography technique to obtain micro-grooved silk fibroin/polyethylene oxide (SF/PEO) film scaffolds with various channel widths (1 µm, 5 µm and 10 µm) for neural tissue engineering applications. In addition, it is also aimed to improve the mechanical properties and stability of the designed biomaterial. The planned groove widths were successfully achieved, and it was observed that the stability was optimally achieved, especially in films exposed to glutaraldehyde vapor. It has also been observed that the addition of PEO to the structure increases the flexibility of the films. It was concluded that it can help guide the progression of cellular neurites and axons along linear lines, within the scope of future potential neural tissue engineering studies of the developed biomaterial. It has also been evaluated that the material can promote regeneration after implantation at a nerve injury site. CR - Altman, G. H., Diaz, F., Jakuba, C., Calabro, T., Horan, R. L., Chen, J., Lu, H., Richmond, J., & Kaplan, D. L. (2003). Silk-based biomaterials. Biomaterials, 24(3), 401–416. https://doi.org/10.1016/s0142-9612(02)00353-8 CR - Buss, A., Brook, G. A., Kakulas, B., Martin, D., Franzen, R., Schoenen, J., Noth, J., & Schmitt, A. B. (2004). Gradual loss of myelin and formation of an astrocytic scar during Wallerian degeneration in the human spinal cord. Brain, 127, 34-44. https://doi.org/10.1093/brain/awh001 CR - Chen, Y. F. (2015). Nanofabrication by electron beam lithography and its applications: A review. Microelectronic Engineering, 135, 57-72. https://doi.org/10.1016/j.mee.2015.02.042 CR - Dalamagkas, K., Tsintou, M., & Seifalian, A. (2016). Advances in peripheral nervous system regenerative therapeutic strategies: A biomaterials approach. Materials Science & Engineering C-Materials for Biological Applications, 65, 425-432. https://doi.org/10.1016/j.msec.2016.04.048 CR - Gu, X. S. (2015). Progress and perspectives of neural tissue engineering. Frontiers of Medicine, 9(4), 401-411. https://doi.org/10.1007/s11684-015-0415-x CR - Jiao, G. L., Pan, Y. Q., Wang, C. C., Li, Z. X., Li, Z. Z., & Guo, R. (2017). A bridging SF/Alg composite scaffold loaded NGF for spinal cord injury repair. Materials Science & Engineering C-Materials for Biological Applications, 76, 81-87. https://doi.org/10.1016/j.msec.2017.02.102 CR - Ling, S. J., Qi, Z. M., Watts, B., Shao, Z. Z., & Chen, X. (2014). Structural determination of protein-based polymer blends with a promising tool: combination of FTIR and STXM spectroscopic imaging. Physical Chemistry Chemical Physics, 16(17), 7741-7748. https://doi.org/10.1039/c4cp00556b CR - Liu, H. F., Li, X. M., Zhou, G., Fan, H. B., & Fan, Y. B. (2011). Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering. Biomaterials, 32(15), 3784-3793. https://doi.org/10.1016/j.biomaterials.2011.02.002 CR - Madduri, S., Papaloizos, M., & Gander, B. (2010). Trophically and topographically functionalized silk fibroin nerve conduits for guided peripheral nerve regeneration. Biomaterials, 31(8), 2323-2334. https://doi.org/10.1016/j.biomaterials.2009.11.073 CR - Meinel, L., Hofmann, S., Karageorgiou, V., Kirker-Head, C., McCool, J., Gronowicz, G., Zichner, L., Langer, R., Vunjak-Novakovic, G., & Kaplan, D. L. (2005). The inflammatory responses to silk films in vitro and in vivo. Biomaterials, 26(2), 147-155. https://doi.org/10.1016/j.biomaterials.2004.02.047 CR - Mohammadzadehmoghadam, S., & Dong, Y. (2019). Fabrication and Characterization of Electrospun Silk Fibroin/Gelatin Scaffolds Crosslinked With Glutaraldehyde Vapor. Frontiers in Materials, 6. https://doi.org/ARTN 9110.3389/fmats.2019.00091 CR - Rockwood, D. N., Preda, R. C., Yucel, T., Wang, X. Q., Lovett, M. L., & Kaplan, D. L. (2011). Materials fabrication from Bombyx mori silk fibroin. Nature Protocols, 6(10), 1612-1631. https://doi.org/10.1038/nprot.2011.379 CR - Seddighi, A., Nikouei, A., Seddighi, A. S., Zali, A. R., Tabatabaei, S. M., Sheykhi, A. R., Yourdkhani, F., & Naeimian, S. (2016). Peripheral Nerve Injury: A Review Article. International Clinical Neuroscience Journal, 3(1), 1-6. https://doi.org/10.22037/icnj.v3i1.12016 CR - Sofia, S., McCarthy, M. B., Gronowicz, G., & Kaplan, D. L. (2001). Functionalized silk-based biomaterials for bone formation. Journal of Biomedical Materials Research, 54(1), 139-148. https://doi.org/Doi 10.1002/1097-4636(200101)54:1 <139::Aid-Jbm17>3.0.Co;2-7 CR - Subramanian, A., Krishnan, U. M., & Sethuraman, S. (2009). Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration. Journal of Biomedical Science, 16. https://doi.org/Artn 10810.1186/1423-0127-16-108 CR - Tabesh, H., Amoabediny, G., Nik, N. S., Heydari, M., Yosefifard, M., Siadat, S. O. R., & Mottaghy, K. (2009). The role of biodegradable engineered scaffolds seeded with Schwann cells for spinal cord regeneration. Neurochemistry International, 54(2), 73-83. https://doi.org/10.1016/j.neuint.2008.11.002 CR - Tucker, B. A., & Mearow, K. M. (2008). Peripheral Sensory Axon Growth: From Receptor Binding to Cellular Signaling. Canadian Journal of Neurological Sciences, 35(5), 551-566. https://doi.org/Doi 10.1017/S0317167100009331 CR - Wade, R. J., & Burdick, J. A. (2014). Advances in nanofibrous scaffolds for biomedical applications: From electrospinning to self-assembly. Nano Today, 9(6), 722-742. https://doi.org/10.1016/j.nantod.2014.10.002 CR - Wang L., Wang Y., Qu J., Hu Y., You R. and Li M. (2013). The Cytocompatibility of Genipin-Crosslinked Silk Fibroin Films. Journal of Biomaterials and Nanobiotechnology, 4(3), 213-221. doi: 10.4236/jbnb.2013.43026 CR - Wang, C. Y., Zhang, K. H., Fan, C. Y., Mo, X. M., Ruan, H. J., & Li, F. F. (2011). Aligned natural-synthetic polyblend nanofibers for peripheral nerve regeneration. Acta Biomaterialia, 7(2), 634-643. https://doi.org/10.1016/j.actbio.2010.09.011 CR - Wang, T. G., Xu, J., Zhu, A. H., Lu, H., Miao, Z. N., Zhao, P., Hui, G. Z., & Wu, W. J. (2016). Human amniotic epithelial cells combined with silk fibroin scaffold in the repair of spinal cord injury. Neural Regeneration Research, 11(10), 1670-1677. https://doi.org/10.4103/1673-5374.193249 CR - Wang, Y. X., Qin, Y. P., Kong, Z. J., Wang, Y. J., & Ma, L. (2014). Glutaraldehyde Cross-linked Silk Fibroin Films for Controlled Release. Advances in Materials and Materials Processing Iv, Pts 1 and 2, 887-888, 541-546. https://doi.org/10.4028/www.scientific.net/AMR.887-888.541 CR - Wang, Y., Rudym, D. D., Walsh, A., Abrahamsen, L., Kim, H. J., Kim, H. S., Kirker-Head, C., & Kaplan, D. L. (2008). In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials, 29(24-25), 3415-3428. https://doi.org/10.1016/j.biomaterials.2008.05.002 CR - Wei, Y. J., Gong, K., Zheng, Z. H., Wang, A. J., Ao, Q., Gong, Y. D., & Zhang, X. F. (2011). Chitosan/silk fibroin-based tissue-engineered graft seeded with adipose-derived stem cells enhances nerve regeneration in a rat model. Journal of Materials Science-Materials in Medicine, 22(8), 1947-1964. https://doi.org/10.1007/s10856-011-4370-z CR - White, J. D., Wang, S. R., Weiss, A. S., & Kaplan, D. L. (2015). Silk-tropoelastin protein films for nerve guidance. Acta Biomaterialia, 14, 1-10. https://doi.org/10.1016/j.actbio.2014.11.045 CR - Willerth, S. M., & Sakiyama-Elbert, S. E. (2007). Approaches to neural tissue engineering using scaffolds for drug delivery. Advanced Drug Delivery Reviews, 59(4-5), 325-338. https://doi.org/10.1016/j.addr.2007.03.014 CR - Xu, Y. Q., Zhang, Z. H., Chen, X. Y., Li, R. X., Li, D., & Feng, S. Q. (2016). A Silk Fibroin/Collagen Nerve Scaffold Seeded with a Co-Culture of Schwann Cells and Adipose-Derived Stem Cells for Sciatic Nerve Regeneration. Plos One, 11(1). https://doi.org/ARTN e0147184 10.1371/journal.pone.0147184 CR - Yang, Y. M., Chen, X. M., Ding, F., Zhang, P. Y., Liu, J., & Go, X. S. (2007). Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials, 28(9), 1643-1652. https://doi.org/10.1016/j.biomaterials.2006.12.004 CR - Yang, Y., Chen, X., Ding, F., Zhang, P., Liu, J., & Gu, X. (2007). Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials, 28(9), 1643–1652. https://doi.org/10.1016/j.biomaterials.2006.12.004 CR - Yang, Y., Ding, F., Wu, H., Hu, W., Liu, W., Liu, H., & Gu, X. (2007). Development and evaluation of silk fibroin-based nerve grafts used for peripheral nerve regeneration. Biomaterials, 28(36), 5526-5535. https://doi.org/10.1016/j.biomaterials.2007.09.001 CR - Zhang, H., Li, L. L., Dai, F. Y., Zhang, H. H., Ni, B., Zhou, W., Yang, X., & Wu, Y. Z. (2012). Preparation and characterization of silk fibroin as a biomaterial with potential for drug delivery. Journal of Translational Medicine, 10. https://doi.org/Artn 117 10.1186/1479-5876-10-117 CR - Zhang, Q., Zhao, Y. H., Yan, S. Q., Yang, Y. M., Zhao, H. J., Li, M. Z., Lu, S. Z., & Kaplan, D. L. (2012). Preparation of uniaxial multichannel silk fibroin scaffolds for guiding primary neurons. Acta Biomaterialia, 8(7), 2628-2638. https://doi.org/10.1016/j.actbio.2012.03.033 UR - https://doi.org/10.31590/ejosat.1123769 L1 - https://dergipark.org.tr/en/download/article-file/2457476 ER -