TY - JOUR T1 - An Excel-based Calculator for Measuring Bacterial Concentration TT - Bakteriyel Konsantrasyonu Ölçmek için Excel Tabanlı Bir Hesap Makinası AU - Törün, Bahadır PY - 2023 DA - April DO - 10.53433/yyufbed.1133323 JF - Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi JO - YYUFBED PB - Van Yuzuncu Yıl University WT - DergiPark SN - 1300-5413 SP - 106 EP - 112 VL - 28 IS - 1 LA - en AB - It is essential to know the initial bacterial count in microbiological studies. The classical plate count method is one of the most reliable methods. However, it is time-consuming. This study offers a fast method based on turbidity. This study describes how to create a calculator to be used for calculation of the bacteria concentration with spectrophotometric data in Excel 2010. In the study, McFarland standard and spread plate methods were used as standards for the control of spectrophotometric measurements. Bacteria used in the experiment were grown in suitable media and spectrophotometric measurements were performed. Then, using the Excel application, a calculator was created with a bio analytical approach to determine the linear relationship between turbidity and bacterial count. Bacteria counts were calculated by entering the absorbance data into the calculator, and the results were verified using cultural methods. As a result, an Excel-based calculator was created that can be used to calculate the number of bacteria from broth media. KW - Bacterial calculation KW - Calibration curve KW - McFarland calculator KW - McFarland standards N2 - Mikrobiyolojik çalışmalarda başlangıç bakteri sayısının bilinmesi esastır. Klasik plaka sayım yöntemi en güvenilir yöntemlerden biridir ancak zaman alıcıdır. Bu çalışma, bulanıklığa dayalı hızlı bir yöntem sunmaktadır. Bu yöntemle, sıvı kültürler için büyüme ortamında kör olarak bakteri içermeyen büyüme ortamı kullanılarak doğrudan bir ölçüm yapılabilir. Bu çalışma Excel 2010’da spektrofotometrik verilerle bakteri sayısının hesaplanmasında kullanılacak hesap makinasının nasıl oluşturulacağını anlatmaktadır. Çalışmada spektrofotometrik ölçümlerin kontrolü için standart olarak McFarland standardı ve yayma plaka yöntemi kullanılmıştır. Denemede kullanılan bakteriler uygun besi ortamında büyütülmüş, spektrofotometrik ölçümleri gerçekleştirilmiştir. Daha sonra Excel uygulaması kullanılarak bulanıklık ve bakteri sayısı arasındaki linear ilişkiyi belirlemek için biyoanalitik yaklaşımla hesap makinası oluşturulmuştur. Yapılan ölçümlerdeki absorbans verileri hesap makinasına girilerek bakteri sayıları hesaplanmış, bulunan bakteri sayları kültürel yöntemler kullanılarak doğrulanmıştır. Sonuç olarak, sıvı besi ortamlarından bakteri sayısının hesaplanmasında kullanılabilecek Excel tabanlı bir hesap makinası oluşturulmuştur. CR - Almeida, A. M., Castel-Branco, M. M., & Falcão, A. C. (2002). Linear regression for calibration lines revisited: Weighting schemes for bio analytical methods. Journal of Chromatography. B., 774(2), 215–222. doi:10.1016/S1570-0232(02)00244-1 CR - Bressolle, F., Bromet-Petit, M., & Audran, M. (1996). Validation of liquid chromatographic and gas chromatographic methods. Applications to pharmacokinetics. Journal of Chromatography B: Biomedical Sciences and Applications. 686(1), 3–10. doi:10.1016/S0378-4347(96)00088-6 CR - Cuadros-Rodríguez, L., García-Campaña, A. M., & Bosque-Sendra, J. M. (1996). Statistical estimation of linear calibration range. Analytical Letters, 29(7), 1231-1239. doi:10.1080/00032719608001471 CR - Edwards, A. (2019). How to do a linear calibration curve in excel. https://www.howtogeek.com/399883/how-to-do-a-linear-calibration-curve-in-excel/ Last accessed on 20.06.2020. CR - Escher, B. I., Neale, P. A., & Villeneuve, D. L. (2018). The advantages of linear concentration–response curves for in vitro bioassays with environmental samples. Environmental Toxicology and Chemistry, 37(9), 2273-2280. doi:10.1002/etc.4178 CR - Farhat, N., Hammes, F., Prest, E., & Vrouwenvelder, J. (2018). A uniform bacterial growth potential assay for different water types. Water Research, 142, 227-235. doi:10.1016/j.watres.2018.06.010 CR - Gu, H., Liu, G., Wang, J., Aubry, A. F., & Arnold, M. E. (2014). Selecting the correct weighting factors for linear and quadratic calibration curves with least-squares regression algorithm in bio analytical LC-MS/MS assays and impacts of using incorrect weighting factors on curve stability, data quality, and assay performance. Analytical Chemistry, 86(18), 8959–8966. doi:10.1021/ac5018265 CR - Hayashi, Y., Matsuda, R., Ito, K., Nishimura, W., Imai, K., & Maeda, M. (2005). Detection limit estimated from slope of calibration curve: an application to competitive ELISA. Analytical Sciences, 21(2), 167-169. doi:10.2116/analsci.21.167 CR - Isenberg, H. D. (2004). McFarland Standards. Clinical Microbiology Procedures Handbook, vol 2. DC, USA: ASM Press. CR - McFarland, J. (1907). The Nephelometer: An instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. Journal of the American Medical Association, 49(14), 1176–1178. doi:10.1001/jama.1907.25320140022001f CR - Moosavi, S. M., & Ghassabian, S. (2018). Linearity of Calibration Curves for Analytical Methods: A Review of Criteria for Assessment of Method Reliability. In M. T. Stauffer (Ed.), Calibration and Validation of Analytical Methods - A Sampling of Current Approaches. IntechOpen. https://doi.org/10.5772/intechopen.72932 CR - Pesti, G. M., Billard, L., Wu, S. B., Swick, R. A., Nguyen, T. T. H., & Morgan, N. (2022). Abductive statistical methods improve the results of calibration curve bioassays: An example of determining zinc bioavailability in broiler chickens. Animal Nutrition, 10, 294-304. doi:10.1016/j.aninu.2022.04.008 CR - Prichard, L., & Barwick, V. (2003). Preparation of Calibration Curves: A Guide to Best Practice. Teddington, UK: VAM. doi:10.13140/RG.2.2.36338.76488 CR - Sofalvi, S., & Schueler, H. E. (2021). Assessment of bioanalytical method validation data utilizing heteroscedastic seven-point linear calibration curves by EZSTATSG1 customized microsoft excel template. Journal of Analytical Toxicology, 45(8), 772-779. doi:10.1093/jat/bkab047 CR - Zapata, A., & Ramirez-Arcos, S. (2015). A comparative study of McFarland turbidity standards and the densimat photometer to determine bacterial cell density. Current Microbiology, 70, 907-909. doi:10.1007/s00284-015-0801-2 UR - https://doi.org/10.53433/yyufbed.1133323 L1 - https://dergipark.org.tr/en/download/article-file/2497074 ER -