@article{article_1141787, title={ON CENTRAL AUTOMORPHISMS OF FREE METABELIAN LIE ALGEBRAS}, journal={Journal of Universal Mathematics}, volume={5}, pages={61–67}, year={2022}, DOI={10.33773/jum.1141787}, author={Erginkara, Başak and Fındık, Şehmus}, keywords={Automorphism, inner, Lie algebras}, abstract={Let $F_m$ be the free metabelian Lie algebra of rank $m$ over a field $K$ of characteristic 0. An automorphism $\varphi$ of $F_m$ is called central if $\varphi$ commutes with every inner automorphism of $F_m$. Such automorphisms form the centralizer $\text{\rm C}(\text{\rm Inn}(F_m))$ of inner automorphism group $\text{\rm Inn}(F_m)$ of $F_m$ in $\text{\rm Aut}(F_m)$. We provide an elementary proof to show that $\text{\rm C}(\text{\rm Inn}(F_m))=\text{\rm Inn}(F_m)$.}, number={2}, publisher={Gökhan ÇUVALCIOĞLU}