TY - JOUR T1 - COMPLEX COACERVATION OF CHICKPEA PROTEIN ISOLATE AND PECTIN: EFFECT OF BIOPOLYMER RATIO AND pH TT - NOHUT PROTEİNİ İZOLATI VE PEKTİNİN KOMPLEKS KOASERVASYONU: BİYOPOLİMER ORANI VE pH’NIN ETKİSİ AU - Adal, Eda PY - 2022 DA - December DO - 10.15237/gida.GD22069 JF - Gıda JO - GIDA PB - The Association of Food Technology WT - DergiPark SN - 1300-3070 SP - 971 EP - 979 VL - 47 IS - 6 LA - en AB - Complex coacervation is an up-and-coming encapsulation technique widely working in the medicinal, food, agriculture, and textile industries. This study investigated the effect of biopolymer ratio and pH on the complexation between chickpea protein isolate (CPI) and pectin (PC) through zeta potential, turbidity measurement, and visual observations. Pectin showed a negative charge profile between pH 2-9. The isoelectric point of the chickpea protein isolate was found as 4.5 (pI). Soluble complexes were formed in the system with pHs below the pI of CPI with positive charges, whereas PC had negative ones. Complex coacervates formed at pH 3.1 with a 4:1(CPI: PC) biopolymer ratio. The turbidity and visual appearance revealed that larger aggregates were formed in CPI-PC coacervates. The findings could help in the development of pH-sensitive biopolymer carriers for use in functional foods and biomaterials. KW - chickpea protein KW - pectin KW - complex coacervation KW - zeta potential N2 - Kompleks koaservasyon, farmasötik, gıda, tarım ve tekstil endüstrilerinde yaygın olarak kullanılan, oldukça destekleyici bir kapsülleme tekniğidir. Bu çalışmada, nohut protein izolatı (NPİ) ve pektin (PK) arasındaki kompleksleşme üzerinde biyopolimer oranı ve pH'ın etkisi zeta potansiyeli, bulanıklık ölçümü ve görsel gözlemler kullanılarak araştırılmıştır. Pektin, pH 2-9 arasında negatif yük profili göstermiştir. Nohut protein izolatının izoelektrik noktası 4.5 (pI) olarak bulunmuştur. Çözülebilir kompleksler pH’ları NPİ’nin izoelektirik noktasının pozitif, pektininin de negatif yük taşıdığı sistemde oluşmuştur. Kompleks koaservat oluşumunun 4:1(NPİ:PK) biyopolimer oranı ile pH 3.1'de gerçekleştiği gözlemlenmiştir. Bulanıklık ve görsel görünüm, NPİ-PK koaservatlarında daha büyük agregatların oluştuğunu ortaya koymuştur. Bulunan sonuçlar fonksiyonel gıdalar ve biyomalzemelerde kullanım için pH'ya duyarlı biyopolimer taşıyıcıların geliştirilmesine yardımcı olabilir. CR - Boukid, F. (2021). Chickpea (Cicer arietinum L.) protein as a prospective plant-based ingredient: a review. https://doi.org/10.1111/ijfs.15046 CR - De Kruif, C. G., Weinbreck, F., & De Vries, R. (2004). Complex coacervation of proteins and anionic polysaccharides. Current Opinion in Colloid & Interface Science, 9(5), 340–349. https://doi.org/10.1016/J.COCIS.2004.09.006 CR - E. Flanagan, S., J. Malanowski, A., Kizilay, E., Seeman, D., L. Dubin, P., Donato-Capel, L., Bovetto, L., & Schmitt, C. (2015). Complex Equilibria, Speciation, and Heteroprotein Coacervation of Lactoferrin and β-Lactoglobulin. Langmuir, 31(5), 1776–1783. https://doi.org/10.1021/la504020e CR - Elmer, C., Karaca, A. C., Low, N. H., & Nickerson, M. T. (2011). Complex coacervation in pea protein isolate–chitosan mixtures. Food Research International, 44(5), 1441–1446. https://doi.org/10.1016/J.FOODRES.2011.03.011 CR - Freitas, M. L. F., Albano, K. M., & Telis, V. R. N. (2017). Characterization of biopolymers and soy protein isolate-high-methoxyl pectin complex. Polímeros, 27(1), 62–67. https://doi.org/10.1590/0104-1428.2404 CR - Gulão, E. da S., de Souza, C. J. F., da Silva, F. A. S., Coimbra, J. S. R., & Garcia-Rojas, E. E. (2014). Complex coacervates obtained from lactoferrin and gum arabic: Formation and characterization. Food Research International, 65(PC), 367–374. https://doi.org/10.1016/J.FOODRES.2014.08.024 CR - Huang, G. Q., Sun, Y. T., Xiao, J. X., & Yang, J. (2012). Complex coacervation of soybean protein isolate and chitosan. Food Chemistry, 135(2), 534–539. https://doi.org/10.1016/J.FOODCHEM.2012.04.140 CR - Joshi, N., Rawat, K., & Bohidar, H. B. (2018). pH and ionic strength induced complex coacervation of Pectin and Gelatin A. Food Hydrocolloids, 74, 132–138. https://doi.org/10.1016/J.FOODHYD.2017.08.011 CR - Kayitmazer, A. B. (2017). Thermodynamics of complex coacervation. Advances in Colloid and Interface Science, 239, 169–177. https://doi.org/10.1016/J.CIS.2016.07.006 CR - Ladjal-Ettoumi, Y., Boudries, H., Chibane, M., & Romero, A. (n.d.). Pea, Chickpea and Lentil Protein Isolates: Physicochemical Characterization and Emulsifying Properties. https://doi.org/10.1007/s11483-015-9411-6 CR - Lan, Y., Ohm, J.-B., Chen, B., & Rao, J. (2020). Phase behavior, thermodynamic and microstructure of concentrated pea protein isolate-pectin mixture: Effect of pH, biopolymer ratio and pectin charge density. Food Hydrocolloids, 101, 105556. https://doi.org/10.1016/J.FOODHYD.2019.105556 CR - Moser, P., Ferreira, S., & Nicoletti, V. R. (2019). Buriti oil microencapsulation in chickpea protein-pectin matrix as affected by spray drying parameters. Food and Bioproducts Processing, 117, 183–193. https://doi.org/10.1016/J.FBP.2019.07.009 CR - Moser, P., Nicoletti, V. R., Drusch, S., & Brückner-Gühmann, M. (2020). Functional properties of chickpea protein-pectin interfacial complex in buriti oil emulsions and spray dried microcapsules. Food Hydrocolloids, 107, 105929. https://doi.org/10.1016/J.FOODHYD.2020.105929 CR - Mousazadeh, M., Mousavi, M., Askari, G., Kiani, H., Adt, I., & Gharsallaoui, A. (2018). Thermodynamic and physiochemical insights into chickpea protein-Persian gum interactions and environmental effects. International Journal of Biological Macromolecules, 119, 1052–1058. https://doi.org/10.1016/J.IJBIOMAC.2018.07.168 CR - Raei, M., Rafe, A., & Shahidi, F. (2018). Rheological and structural characteristics of whey protein-pectin complex coacervates. Journal of Food Engineering, 228, 25–31. https://doi.org/10.1016/J.JFOODENG.2018.02.007 CR - Sá, A. G. A., Moreno, Y. M. F., & Carciofi, B. A. M. (2020). Plant proteins as high-quality nutritional source for human diet. Trends in Food Science & Technology, 97, 170–184. https://doi.org/10.1016/J.TIFS.2020.01.011 CR - Sarabi-Aghdam, V., Mousavi, M., Hamishehkar, H., Kiani, H., Emam-Djomeh, Z., Mirarab Razi, S., & Rashidinejad, A. (2021). Utilization of chickpea protein isolate and Persian gum for microencapsulation of licorice root extract towards its incorporation into functional foods. Food Chemistry, 362, 130040. https://doi.org/10.1016/J.FOODCHEM.2021.130040 CR - Souza, C. J. F., da Costa, A. R., Souza, C. F., Tosin, F. F. S., & Garcia-Rojas, E. E. (2018). Complex coacervation between lysozyme and pectin: Effect of pH, salt, and biopolymer ratio. International Journal of Biological Macromolecules, 107(PartA), 1253–1260. https://doi.org/10.1016/J.IJBIOMAC.2017.09.104 CR - Timilsena, Y. P., Akanbi, T. O., Khalid, N., Adhikari, B., & Barrow, C. J. (2019). Complex coacervation: Principles, mechanisms and applications in microencapsulation. International Journal of Biological Macromolecules, 121, 1276–1286. https://doi.org/10.1016/J.IJBIOMAC.2018.10.144 CR - Wang, Y., Wang, Y., Li, K., Bai, Y., Li, B., & Xu, W. (2020). Effect of high intensity ultrasound on physicochemical, interfacial and gel properties of chickpea protein isolate. LWT, 129, 109563. https://doi.org/10.1016/J.LWT.2020.109563 CR - Wu, B., & McClements, D. J. (2015). Modulating the morphology of hydrogel particles by thermal annealing: mixed biopolymer electrostatic complexes. Journal of Physics D: Applied Physics, 48(43), 434002. https://doi.org/10.1088/0022-3727/48/43/434002 CR - Xiong, T., Xiong, W., Ge, M., Xia, J., Li, B., & Chen, Y. (2018). Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate. Food Research International, 109, 260–267. https://doi.org/10.1016/J.FOODRES.2018.04.044 CR - Xiong, W., Li, Y., Ren, C., Li, J., Li, B., & Geng, F. (2021). Thermodynamic parameters of gelatin-pectin complex coacervation. Food Hydrocolloids, 120, 106958. https://doi.org/10.1016/J.FOODHYD.2021.106958 CR - Xu, L., yan, W., Zhang, M., Hong, X., Liu, Y., & Li, J. (2021). Application of ultrasound in stabilizing of Antarctic krill oil by modified chickpea protein isolate and ginseng saponin. LWT, 149, 111803. https://doi.org/10.1016/J.LWT.2021.111803 CR - Ye, A. (2008). Complexation between milk proteins and polysaccharides via electrostatic interaction: principles and applications-a review. https://doi.org/10.1111/j.1365-2621.2006.01454.x UR - https://doi.org/10.15237/gida.GD22069 L1 - https://dergipark.org.tr/en/download/article-file/2536863 ER -