TY - JOUR T1 - On the extended Wright hypergeometric matrix function and its properties AU - Gezer, Halil AU - Kaanoglu, Cem PY - 2023 DA - September Y2 - 2023 DO - 10.31801/cfsuasmas.1147745 JF - Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics JO - Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. PB - Ankara University WT - DergiPark SN - 1303-5991 SP - 606 EP - 617 VL - 72 IS - 3 LA - en AB - Recently, Bakhet et al. [9] presented the Wright hypergeometric matrix function $_{2}R_{1}^{(\tau )}(A,B;C;z)$ and derived several properties. Abdalla [6] has since applied fractional operators to this function. In this paper, with the help of the generalized Pochhammer matrix symbol $(A;B)_{n}$ and the generalized beta matrix function $\mathcal{B}(P,Q;\mathbb{X})$, we introduce and study an extended form of the Wright hypergeometric matrix function, $_{2}R_{1}^{(\tau )}((A,\mathbb{A}),B;C;z;\mathbb{X}).$ We establish several potentially useful results for this extended form, such as integral representations and fractional derivatives. We also derive some properties of the corresponding incomplete extended Wright hypergeometric matrix function. KW - Wright hypergeometric matrix function KW - generalized hypergeometric functions KW - Riemann-Liouville fractional derivative CR - Abd-Elmageed, H., Hidan, M., Abdalla, M., Investigation for the k-analogue of $\tau$-Gauss hypergeometric matrix functions and associated fractional calculus, Linear and Multilinear Algebra, (2022), 1-14. https://doi.org/10.1080/03081087.2022.2161459 CR - Abdalla, M., On the incomplete hypergeometric matrix functions, Ramanujan J., 43 (2017), 663-678. https://doi.org/10.1007/s11139-016-9795-z CR - Abdalla, A., Akel, M., Contribution of using Hadamard fractional integral operator via Mellin integral transform for solving certain fractional kinetic matrix equations, Fractal and Fractional, 6(6) (2022), 305. https://doi.org/10.3390/ fractalfract6060305 CR - Abdalla, M., Bakhet, A., Extended Gauss hypergeometric matrix functions, Iran J Sci Technol Trans Sci., 42 (2018), 1465-1470. https://doi.org/10.1007/s40995-017-0183-3 CR - Abdalla, M., Bakhet, A., Extension of beta matrix function, Asian J Math Comput Res., 9 (2016), 253-264. CR - Abdalla, M., Fractional operators for the Wright hypergeometric matrix functions, Advances in Difference Equations, (2020), 246. https://doi.org/10.1186/s13662-020-02704-y CR - Abul-Dahab, M. A., Bakhet, A. K., A certain generalized gamma matrix functions and their properties, J. Ana. Num. Theor., 3(1) (2015), 63-68. https://dx.doi.org/10.12785/jant/030110 CR - Bakhet, A., Hyder, A. A., Almoneef, A. A., Niyaz, M., Soliman, A. H., On new matrix version extension of the incomplete Wright hypergeometric functions and their fractional calculus, Mathematics, 10(22) (2022), 4371. https://doi.org/10.3390/math10224371 CR - Bakhet, A., Jiao, Y., He, F., On the Wright hypergeomertric matrix functions and their fractional calculus, Integral Transforms Spec. Funct., 30 (2019), 138-156. https://doi.org/10.1080/10652469.2018.1543669 CR - Dwivedi, R., Sanjhira, R., On the matrix function $_{p}R_{q}(A;B;z)$ and its fractional calculus properties, Communications in Mathematics, 31(1) (2023), 43-56. https://doi.org/10.46298/cm.10205 CR - Hidan, M., Akel, M., Abd-Elmageed, H., Abdalla, M., Solution of fractional kinetic equations involving extended $(k,\tau)$-Gauss hypergeometric matrix functions, AIMS Math., 7(8) (2022), 14474-14491. https://doi.org/10.3934/math.2022798 CR - Jodar, L., Cortes, J. C., Some properties of gamma and beta matrix functions, Appl. Math. Lett., 11 (1998), 89-93. https://doi.org/10.1016/S0893-9659(97)00139-0 CR - Jodar, L., Cortes, J. C., On the hypergeometric matrix functions, J. Compute. Appl. Math., 99 (1998), 205-217. https://doi.org/10.1016/S0377-0427(98)00158-7 CR - Khammash, G. S., Agarwal, P., Choi, J., Extended k-gamma and k-beta functions of matrix arguments, Mathematics, 8 (2020), 1715. https://doi.org/10.3390/math8101715 CR - Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Elsevier (North-Holland) Science Publishers, Amsterdam, (2006), 204. CR - Özarslan, M. A., Ustaoğlu, C., Incomplete Caputo fractional derivative operators, Adv. Differ. Equ., (2018), 209. https://doi.org/10.1186/s13662-018-1656-1 CR - Özarslan, M. A., Ustaoğlu, C., Some incomplete hypergeometric functions and incomplete Riemann-Liouville fractional integral operators, Mathematics, 7 (2018), 483. https://doi.org/10.3390/math7050483 CR - Verma, A., On the incomplete Srivastava‘s triple hypergeometric matrix functions, Quaest Math., (2020), 1-24. https://doi.org/10.2989/16073606.2020.1753123 CR - Verma, A., Yadav, S., On the incomplete second Appell hypergeometric matrix functions, Linear Multilinear Algebra, (2019). https://doi.org/10.1080/03081087.2019.1640178 CR - Verma, A., Dwivedi, R., Sahai, V., Some extended hypergeometric matrix functions and their fractional calculus, (2020), arXiv:2011.00772v1. https://doi.org/10.48550/arXiv.2011.00772 CR - Zou, C., Yu, M., Bakhet, A., He, F., On the matrix versions of incomplete extended gamma and beta functions and their applications for the incomplete Bessel, Complexity, (2020). https://doi.org/10.1155/2021/5586021 UR - https://doi.org/10.31801/cfsuasmas.1147745 L1 - https://dergipark.org.tr/en/download/article-file/2553701 ER -