TY - JOUR T1 - Influence Of Low-Temperature Degradation On Phase Transformation And Biaxial Flexural Strength On Different High-Translucent 4Y-PSZ, 5Y-PSZ, 6Y-PSZ Monolithic Zirconia AU - Yılmaz, Handan AU - Doğru, Gülsüm PY - 2024 DA - March DO - 10.33808/clinexphealthsci.1150128 JF - Clinical and Experimental Health Sciences PB - Marmara University WT - DergiPark SN - 2459-1459 SP - 45 EP - 53 VL - 14 IS - 1 LA - en AB - Objective: This study aimed to investigate the effect of low-temperature degradation (LTD) in phase transformation and biaxial flexural strength of high-translucent yttria partially stabilized zirconia (Y-PSZ) and yttria tetragonal zirconia polycrystalline (3-YTZP).Methods: A total of 120 new high-translucent 3-YTZP (NMS) and Y – PSZ (KST, KUT, NQ3MS) zirconia disc specimens were manufactured according to ISO 6872 for biaxial flexural strength (14 mm., 1.2 ± 0.02 mm). The specimens from each type of material were divided into 3 subgroups (n:30) according to the LTD in an autoclave at 134 C0 at 2 bar (n:10) (at 5, 20 hour (h)). Specimens without LTD served as the control. Data of the monoclinic phase changes (Xm) and flexural strength were analyzed using two-way ANOVA followed by post hoc MannWhitney U test. Weibull statistics were used to analyze strength reliability.Results: LTD increased the monoclinic content significantly for NMS and slightly for the KST group. A monoclinic phase was not detected for KUT and NQ3MS groups. The biaxial flexural strength of the NMS group was affected significantly and decreased with an increase in the 20 h aging. For flexural strength values, there was no significant difference in aging times for each of the KST, KUT, and NQ3MS groups. Weibull analysis showed the highest characteristic strength for NMS (1412.9), KST (750.1), NQ3MS(790.5) and KUT (615.2) groups. The Weibull modulus (m) increased in the NMS, KUT, and NQ3MS groups compared with the control group and decreased in the KST group.Conclusion: LTD caused a significant decrease in the biaxial flexural strength results of the NMS group but did not significantly affect the KST, KUT, and NQ3MS groups’ values. KW - High-translucent zirconia KW - Low-temperature degradation KW - Phase transformation KW - Biaxial flexural strength CR - Zhang Y. Making yttria-stabilized tetragonal zirconia translucent. Dent Mater 2014; 30(10):1195-1203. DOI:10.1016/j.dental.2014.08.375. CR - Zhang F, Vanmeensel K, Batuk M, Hadermann J, Inokoshi M, van Meerbeek B, Naert I, Vleugels J.Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation. Acta Biomater 2015;16:215-222. DOI: 10.1016/j.actbio.2015.01.037. Epub 2015 Feb 4. CR - Hannink RH, Kelly PM, Muddle BC. Transformation toughening in zirconiacontaining ceramics. J Am Ceram Soc. 2000;83(3):461-487. DOI:10.1111/j.11512916. 2000.tb01221.x CR - Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999; 20(1):1-25. DOI: 10.1016/s0142-9612(98)00010-6 CR - Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater. 2008;24(3):299-307. DOI: 10.1016/j. dental.2007.05.007 CR - Hatanaka R, Polli GS, Adabo GL. The mechanical behavior of high-translucent monolithic zirconia after adjustment and finishing procedures and artificial aging. J Prosthet Dent. 2020;123(2):330-337. DOI: 10.1016/j.prosdent.2018.12.013 CR - Pittayachawan P, McDonald A, Petrie A, Knowles JC. The biaxial flexural strength and fatigue property of Lava™ Y-TZP dental ceramic. Dent Mater. 2007;23(8):10181029. DOI: 10.1016/j.dental.2006.09.003 CR - Zhang F, Inokoshi M, Batuk M, Hadermann J, Naert I, Van Meerbeek B, Vleugels J. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent Mater. 2016;32(12):e327-e337. DOI: 10.1016/j.dental.2016.09.025 CR - Miyazaki T, Nakamura T, Matsumura H, Ban S, Kobayashi T. Current status of zirconia restoration. J Prosthodont Res. 2013;57(4):236-261. DOI: 10.1016/j.jpor.2013.09.001 CR - Zhang F, Van Meerbeek B, Vleugels J. Importance of tetragonal phase in hightranslucent partially stabilized zirconia for dental restorations. Dent Mater. 2020;36(4):491-500. DOI: 10.1016/j.dental.2020.01.017 CR - Khayat W, Chebib N, Finkelman M, Khayat S, Ali A. Effect of grinding and polishing on roughness and strength of zirconia J Prosthet Dent. 2018;119(4):626-631. DOI: 10.1016/j.prosdent.2017.04.003 CR - Lawson S. Environmental degradation of zirconia ceramics. J Eur Ceram Soc. 1995;15(6): 485-502. DOI:10.1016/0955-2219(95)00035-S CR - Chevalier J, Gremillard L, Deville S. Low-temperature degradation of zirconia and implications for biomedical implants. Annu Rev Mater Res. 2007;37:1-32. DOI:10.1146/annurev.matsci.37.052.506.084250 CR - Chevalier J, Cales B, Drouin JM. Low-temperature aging of Y-TZP ceramics. J Am Ceram Soc 1999;82(8):2150-2154. DOI:10.1111/j.1151-2916.1999.tb02055.x CR - Roy M, Whiteside L, Katerberg B, Steiger J. Phase transformation, roughness, and microhardness of artificially aged yttria-and magnesia-stabilized zirconia femoral heads. J Biomed Mater Res. A 2007;83(4):1096-1102. DOI: 10.1002/jbm.a.31438 CR - Swab JJ. Low temperature degradation of Y-TZP materials. J Mater Sci. 1991;26(24):6706-6714. DOI:10.1007/bf00553696. CR - Payyapilly J, Butt D. Kinetics of hydrothermally induced transformation of yttria partially stabilized zirconia. J Nucl Mater. 2007;360(2):92-98. DOI:10.1016/j.jnucmat.2006.08.027 CR - Sato T, Shimada M. Control of the tetragonal-to-monoclinic phase transformation of yttria partially stabilized zirconia in hot water. J Mater Sci. 1985;20(11):3988-3992. DOI:10.1007/BF00552389 CR - Jue JF, Chen J, Virkar AV. Low-temperature aging of t′-zirconia: The role of microstructure on phase stability. J Am Ceram Soc. 1991;74(8):1811-1820. DOI:10.1111/j.1151-2916.1991.tb07793.x CR - Gremillard L, Chevalier J, Epicier T, Deville S, Fantozzi G. Modeling the aging kinetics of zirconia ceramics. J Eur Ceram Soc. 2004;24(13):3483-3489. DOI:10.1016/j.jeurceramsoc.2003.11.025 CR - Li JF, Watanabe R. Phase transformation in Y2O3-partiallystabilized ZrO2 polycrystals of various grain sizes during lowtemperature aging in water. J Am Ceram Soc. 1998;81(10): 2687-2691. DOI:10.1111/j.1151-2916.1998.tb02677.x CR - Deville S, Chevalier J, Gremillard L. Influence of surface finish and residual stresses on the ageing sensitivity of biomedical grade zirconia. Biomaterials 2006; 27(10):2186-2192. DOI:10.1016/j.biomaterials.2005.11.021 CR - Chevalier J, Deville S, Münch E, Jullian R, Lair F. Critical effect of cubic phase on aging in 3 mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis. Biomaterials 2004;25(24):5539-5545. DOI:10.1016/j.biomaterials.2004.01.002 CR - Zhang Y, Lawn B. Novel zirconia materials in dentistry. J Dent Res. 2018;97:140-147. DOI:10.1177/002.203.4517737483. CR - Mao L, Kaizer M, Zhao M, Guo B, Song Y, Zhang Y. Graded ultra-translucent zirconia (5Y-PSZ) for strength and functionalities. J Dent Res. 2018;97(11):1222-1228. DOI:10.1177/002.203.4518771287 CR - Tong H, Tanaka CB, Kaizer MR, Zhang Y. Characterization of three commercial YTZP ceramics produced for their hightranslucency, high-strength and high-surface area. Ceram Int. 2016;42(1):1077-1085. DOI:10.1016/j.ceramint.2015.09.033 CR - Gracis S, Thompson VP, Ferencz JL, Silva NR, Bonfante EA. A new classification system for all-ceramic and ceramic-like restorative materials. Int J Prosthodont. 2015;28(3):227-235. DOI: 10.11607/ijp.4244 CR - Stawarczyk B, Keul C, Eichberger M, Figge D, Edelhoff D, Lümkemann N.Three generations of zirconia: From veneered to monolithic. Part I. Quintessence Int. 2017;48(5):369-380. DOI: 10.11607/ijp.4244. CR - Özcan M, Volpato CÂM, Fredel MC. Artificial aging of zirconium dioxide: an evaluation of current knowledge and clinical relevance. Curr Oral Health Rep. 2016;3(3):193-197. DOI 10.1007/s40496.016.0096-9 CR - Flinn BD, deGroot DA, Mancl LA, Raigrodski AJ. Accelerated aging characteristics of three yttria-stabilized tetragonal zirconia polycrystalline dental materials. J Prosthet Dent. 2012;108(4):223-230. DOI: 10.1016/S0022-3913(12)60166-8 CR - Kohorst P, Borchers L, Strempel J, Stiesch M, Hassel T, Bach FW, Hübsch C. Low temperature degradation of different zirconia ceramics for dental applications. Acta Biomater. 2012;8(3):1213-1220. DOI: 10.1016/j.actbio.2011.11.016 CR - Kelly JR, Denry I. Stabilized zirconia as a structural ceramic: An overview. Dent Mater. 2008;24(3):289-298. DOI: 10.1016/j.dental.2007.05.005 CR - Cotič J, Jevnikar P, Kocjan A. Ageing kinetics and strength of airborne-particle abraded 3Y-TZP ceramics. Dent Mater. 2017;33(7):847-856. DOI: 10.1016/j.dental.2017.04.014 CR - ISO 6872 (2008):Dentistry-Ceramic Materials. International Organization for Standardization, Geneva, Switzerland 2008. CR - Garvie RC, Nicholson PS. Phase analysis in zirconia systems. J Am Ceram Soc. 1972;55(6):303-305. DOI:10.1111/j.1151-2916.1972.tb11290.x CR - Pereira GK, Guilardi LF, Dapieve KS, Kleverlaan CJ, Rippe MP, Valandro LF. Mechanical reliability, fatigue strength and survival analysis of new polycrystalline translucent zirconia ceramics for monolithic restorations. J Mech Behav Biomed Mater. 2018;85:57-65. DOI:10.1016/j.jmbbm.2018.05.029 CR - KATANA Zirconia UTML, Kuraraynoritake.eu. Published [2022]. Accessed [20 July 2022] https://www.kuraraynoritake.eu/en/katana-zirconia-utml. CR - Kwon SJ, Lawson NC, McLaren EE, Nejat AH, Burgess JO. Comparison of the mechanical properties of translucent zirconia and lithium disilicate. J Prosthet Dent. 2018;120(1):132-137. DOI: 10.1016/j.prosdent.2017.08.004 CR - GmbH D. Nacera® Pearl Q³ Multi-Shade, Nacera. Published [2022]. Accessed [20 July 2022]. https://www.nacera-medical. com/de/loesungen/nacera-pearl-q3-multishade. CR - Zhang F, Reveron H, Spies BC, Van Meerbeek B, Chevalier J. Trade-off between fracture resistance and translucency of zirconia and lithium-disilicate glass ceramics for monolithic restorations. Acta Biomater. 2019;91:24-34. DOI: 10.1016/j.actbio.2019.04.043 CR - Inokoshi M, Shimizu H, Nozaki K, Takagaki T, Yoshihara K, Nagaoka N, Zhang F, Vleugels J, Van Meerbeek B, Minakuchi S. Crystallographic and morphological analysis of sandblasted highly translucent dental zirconia. Dent Mater. 2018;34(3):508518. DOI: 10.1016/j.dental.2017.12.008 CR - Inokoshi M, Vanmeensel K, Zhang F, De Munck J, Eliades G, Minakuchi S, Naert I, Van Meerbeek B, Vleugels J. Aging resistance of surface-treated dental zirconia. Dent Mater. 2015;31(2):182-194. DOI:10.1016/j.dental.2014.11.018 CR - Pereira G, Venturini A, Silvestri T, Dapieve K, Montagner A, Soares F, Valandro L. Low-temperature degradation of Y-TZP ceramics: A systematic review and metaanalysis. J Mech Behav Biomed Mater. 2015;55:151-163. DOI: 10.1016/j.jmbbm.2015.10.017 CR - Zhuang Y, Zhu Z, Jiao T, Sun J. Effect of aging time and thickness on low temperature degradation of dental zirconia. J Prosthodont. 2019;28(1):e404-e410. DOI: 10.1111/jopr.12946 CR - Pereira G, Amaral M, Cesar PF, Bottino MC, Kleverlaan CJ, Valandro LF. Effectof low-temperature aging on the mechanical behavior of ground Y-TZP. J Mech Behav Biomed Mater. 2015;45:183-192. DOI: 10.1016/j.jmbbm.2014.12.009 CR - Kou W, Garbrielsson K, Borhani A, Carlborg M, Molin Thorén, M. The effects of artificial aging on high translucent zirconia. Biomater Investig Dent. 2019;6(1):54-60. DOI:10.1080/26415.275.2019.1684201 CR - Reyes AR, Dennison JB, Powers JM, Sierraalta M,Yaman P. Translucency and flexural strength of translucent zirconia ceramics. J Prosthet Dent. 2021; DOI: 10.1016/j.prosdent.2021.06.019 CR - Flinn BD, Raigrodski AJ, Mancl LA, Toivola R, Kuykendall T. Influence of aging on flexural strength of translucent zirconia for monolithic restorations. J Prosthet Dent. 2017;117(2):303-309. DOI:10.1016/j.prosdent.2016.06.010 CR - Harada A, Shishido S, Barkarmo S, Inagaki R, Kanno T, Örtengren U, Egusa H, Nakamura K. Mechanical and microstructural properties of ultra-translucent dental zirconia ceramic stabilized with 5 mol% yttria. J Mech Behav Biomed Mater. 2020; 111:103974. DOI: 10.1016/j.jmbbm.2020.103974 CR - Nakamura K, Harada A, Ono M, Shibasaki H, Kanno T, Niwano Y, Adolfsson E, Milleding P, Örtengren U. Effect of low-temperature degradation on the mechanical and microstructural properties of tooth-colored 3Y-TZP ceramics. J Mech Behav Biomed Mater. 2016;53:301-311. DOI: 10.1016/j.jmbbm.2015.08.031. UR - https://doi.org/10.33808/clinexphealthsci.1150128 L1 - https://dergipark.org.tr/en/download/article-file/2562542 ER -