TY - JOUR T1 - Endüktif iris yapısı kullanarak C-bandında bant geçiren dikdörtgen dalga kılavuzu filtrenin analitik olarak tasarımı TT - Analytical design of band-pass waveguide filter in C-band using inductive iris AU - Genç, Abdullah AU - Biçer, Sinan AU - Doğan, Habib AU - Başyiğit, İbrahim Bahadır PY - 2023 DA - July Y2 - 2023 DO - 10.17714/gumusfenbil.1169961 JF - Gümüşhane Üniversitesi Fen Bilimleri Dergisi PB - Gumushane University WT - DergiPark SN - 2146-538X SP - 646 EP - 660 VL - 13 IS - 3 LA - tr AB - Mikrodalga teknolojisinde dikdörtgen dalga kılavuzu (DDK) filtreler, genellikle düşük kayıp ve yüksek güç taşıma kapasitesinden dolayı yaygın olarak kullanılırlar. Bu çalışmada, istenilen derece ve frekans bölgesinde simetrik endüktif iris yapısına sahip bant geçiren DDK filtrelerin analitik yöntemle tasarımı ve MATLAB kodları verilmiştir. Örnek bir tasarım olarak 4.5-4.8 GHz aralığında 5. dereceden bir filtre, analitik ve nümerik olarak tasarlanmıştır. Ayrıca, filtre derecesi, farklı iris kalınlıkları ve değişik iris tiplerinin filtre performansına olan etkisi incelenmiştir. Elde edilen sonuçlara göre, iris kalınlığı filtrenin frekans cevabında etkili iken, iris uçları veya irislerin dalga kılavuzuyla birleştiği noktalarda belli oranlarda yapılan ovalleştirmelerin frekans cevabında önemli bir etkisi yoktur. % 6.5 bant genişliğine sahip olarak tasarlanan DDK filtre, benzer frekansta tasarlanmış filtrelere göre daha geniş bir bant genişliğine sahiptir. Analitik sonuçlarına göre, 4.5-4.8 GHz aralığında S11 değeri -20 dB değerinden küçük iken; aynı bölgede S21 değeri, yaklaşık 0 dB civarındadır. Diğer taraftan CST Studio Suite Microwave programı ile elde edilen simülasyon sonuçlarına göre ise, aynı frekans bandında S11 değeri -18 dB değerinden küçük iken; aynı bölgede S21 değeri, yaklaşık 0.09 dB civarındadır. KW - Bant geçiren filtre KW - C bandı KW - Dalga kılavuzu filtre KW - Endüktif iris N2 - Rectangular waveguide (RWG) filters are commonly utilized in microwave technology due to their low loss and high power carrying capacity. In this study, analytical method design and MATLAB codes of band-pass RWG filters with symmetrical inductive iris structure in the desired degree and frequency region are given. As an example of the design, a 5th order filter in the 4.5-4.8 GHz range is analytically and numerically designed. In addition, the order of filter, the effect of different iris thicknesses and various iris types on the filter performance is investigated. The results revealed that the thickness of the iris has an effect on the frequency response of the filter, but the bending at the iris tips or the bending at the junction of the iris with the waveguide has significantly no effect on the frequency response. The filter designed with a bandwidth of 6.5% has a wider bandwidth than filters designed with a similar frequency. According to the analytical results, in the 4.5-4.8 GHz range, the value of S11 is less than -20 dB, while the value of S21 in the same region is around 0 dB. On the other hand, according to the simulation results obtained with the CST Studio Suite Microwave program, in the same frequency band, the value of S11 is less than -18 dB, while the value of S21 in the same region is about 0.09 dB. CR - Genç, A., Başyiğit, İ. B., Göksu, T., & Helhel, S. Farklı güç oranları için dikdörtgen dalga kılavuzu güç bölücülerinin karakteristiklerinin incelenmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(1), 261-270. https://doi.org/10.21605/cukurovaummfd.420745 CR - AbuHussain, M., & Hasar, U. C. (2020). Design of X-bandpass waveguide Chebyshev filter based on CSRR metamaterial for telecommunication systems. Electronics, 9(1), 101. https://doi.org/10.3390/electronics9010101 CR - Akatimagool, S., Intarawiset, N., & Inchan, S. (2016). Design of waveguide bandpass filter using cascade inductive and capacitive irises. 2016 IEEE 5th Asia-Pacific Conference on Antennas and Propagation (APCAP) (ss. 387-388), https://doi.org/10.1109/APCAP.2016.7843256. CR - Bage, A., & Das, S. (2017). Stopband performance improvement of CSRR-loaded waveguide bandpass filters using asymmetric slot structures. IEEE Microwave and Wireless Components Letters, 27(8), 697-699. https://doi.org/10.1109/LMWC.2017.2723983 CR - Bianchi, G., & Sorrentino, R. (2007). Electronic filter simulation & design. McGraw Hill Professional. CR - Bod, M., & Hatefi Ardakani, H. (2018). A dual‐mode waveguide filter based on stereometamaterial CSRR resonator. Microwave and Optical Technology Letters, 60(12), 3003-3006. https://doi.org/10.1002/mop.31409 CR - Boria, V. E., & Gimeno, B. (2007). Waveguide filters for satellites. IEEE Microwave Magazine, 8(5), 60-70. https://doi.org/10.1109/MMM.2007.903649 CR - D’Auria, M., Otter, W. J., Hazell, J., Gillatt, B. T., Long-Collins, C., Ridler, N. M., & Lucyszyn, S. (2015). 3-D printed metal-pipe rectangular waveguides. IEEE Transactions on Components, Packaging and Manufacturing Technology, 5(9), 1339-1349. https://doi.org/10.1109/TCPMT.2015.2462130 CR - Dahle, R., Laforge, P., & Kuhling, J. (2017). 3-D printed customizable inserts for waveguide filter design at X-band. IEEE Microwave and Wireless Components Letters, 27(12), 1080-1082. https://doi.org/10.1109/LMWC.2017.2754345 CR - Eroglu, A. (2022). RF/Microwave engineering and applications in energy systems. John Wiley & Sons. CR - Genc, A., Goksu, T., & Helhel, S. (2019). Investigation of the performances of waveguide bend components fabricated with 3D printing and copper plating. Journal of the Faculty of Engineering and Architecture of Gazi University, 34(2). https://doi.org/10.17341/gazimmfd.416538 CR - Genc, A., Dogan, H., Basyiğit, I. B., & Helhel, S. (2019). Fabrication of low-weight broadband 90 waveguide twist at X-Ku band with 3D printing technology. Proceedings of 10th International Symposium on Intelligent Manufacturing and Service Systems (pp. 971-978), Sakarya. CR - Hunter, I. (2001). Theory and design of microwave filters. IET. CR - Jin, J., Lin, X., Jiang, Y., Wang, L., & Fan, Y. (2014). A novel E‐plane substrate inserted bandpass filter with high selectivity and compact size. International Journal of RF and Microwave Computer‐Aided Engineering, 24(4), 451-456. https://doi.org/10.1002/mmce.20785 CR - İmeci, Ş. T., Tütüncü, B., Bešlija, F., & Herceg, L. (2022). Microstrip filters based on open stubs and SIR for high frequency and ultra-wideband applications. Journal of Engineering Research, 10(3A). https://doi.org/10.36909/jer.10711 CR - Lin, X., Jin, J., Jiang, Y., & Fan, Y. (2013). Metamaterial-inspired waveguide filters with compact size and sharp skirt selectivity. Journal of Electromagnetic Waves and Applications, 27(2), 224-232. https://doi.org/10.1080/09205071.2013.743450 CR - Máximo-Gutiérrez, C., Hinojosa, J., & Álvarez-Melcón, A. (2021). Narrowband and wideband bandpass filters based on empty substrate integrated waveguide loaded with dielectric elements. IEEE Access, 9, 32094-32105. https://doi.org/10.1109/ACCESS.2021.3060516 CR - Piltyay, S., Bulashenko, A., Sushko, O., Bulashenko, O., & Demchenko, I. (2021). Analytical modeling and optimization of new Ku‐band tunable square waveguide iris‐post polarizer. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 34(5), e2890. https://doi.org/10.1002/jnm.2890 CR - Soreng, A. M., & Mishra, A. (2018). Design techniques of microwave cavity and waveguide filters: A literature review. International Journal of Engineering and Technical Research, 8(4). CR - Xiang, K. R., Chen, F. C., & Chu, Q. X. (2023). Compact waveguide filters using novel resonant coupling structures. IEEE Transactions on Microwave Theory and Techniques, 71(5), 2129-2138. https://doi.org/10.1109/TMTT.2022.3224755 CR - Yechou, L., Tribak, A., Kacim, M., Zbitou, J., & Mediavilla, A. (2014). Ku-band waveguide band-pass filter with iris radius. 2014 International Conference on Multimedia Computing and Systems (ICMCS) (ss. 1-4) https://doi.org/10.1109/ICMCS.2014.6911230 UR - https://doi.org/10.17714/gumusfenbil.1169961 L1 - https://dergipark.org.tr/en/download/article-file/2628180 ER -