TY - JOUR T1 - A Novel Covid-19 Detection System Based on PSO and Hybrid Feature Using Support Vector Machines TT - A Novel Covid-19 Detection System Based on PSO and Hybrid Feature Using Support Vector Machines AU - Ozdemır, Mehmet Fatih AU - Hanbay, Davut PY - 2022 DA - October Y2 - 2022 DO - 10.53070/bbd.1172671 JF - Computer Science JO - JCS PB - Ali KARCI WT - DergiPark SN - 2548-1304 SP - 120 EP - 129 VL - IDAP-2022 : International Artificial Intelligence and Data Processing Symposium LA - en AB - The world first met the coronavirus (COVID-19) in Wuhan, China in December 2019. It has continued to increase its influence from the first encounter until today. The detection of this virus, which has caused the death of many, is of great importance today. There are many approaches to the detection of this disease. One of the most effective of these approaches is the detection of COVID-19 disease using chest X-Ray images. In this paper, an intelligent system was proposed to classify normal, pneumonia patients and COVID-19 patients using chest X-Ray images. The proposed system was composed of four stage. At first, all images in the dataset were pre-processed. Then for the feature extraction uniform Local Binary Pattern (LBP) and DenseNet201 deep learning models were used. Particle swarm optimization (PSO) algorithm was used to select effective features. The determined effective features were classified by support vector machine (SVM). Accuracy and AUC parameters were used as performance criteria. Evaluated accuracy and AUC values were 99.9%, 1.00, respectively. The dataset and proposed model codes are made publicly available at: https://github.com/mfatiho/covid-detection-chest-xray KW - Covid-19 KW - Feature Selection KW - LBP KW - DenseNet KW - SVM N2 - Koronavirüsle ilk olarak Aralık 2019'da Çin'in Wuhan kentinde ortaya çıkmıştır. Bugüne kadar etkisini artırmaya devam ettirmiştir. Birçok kişinin ölümüne neden olan bu virüsün tespiti günümüzde büyük önem taşımaktadır. Bu hastalığın tespiti için birçok yaklaşım bulunmaktadır. Bu yaklaşımların en başarılılarında biri göğüs röntgeni görüntüleri kullanılarak koranavirüs hastalığının veya hastalarının tespitidir. Bu çalışmada, göğüs röntgeni görüntüleri kullanılarak normal, zatürre ve koranavirüs hastalarını sınıflandırmak için akıllı bir sistem önerilmiştir. Önerilen sistem dört aşamadan oluşmaktadır. İlk olarak, veri setindeki tüm görüntüler ön işleme tabi tutulmuştur. Daha sonra özellik çıkarımı için tek tip Yerel İkili Örüntü (LBP) ve DenseNet201 derin öğrenme modelleri kullanılmıştır. Etkili öznitelikleri seçmek için parçacık sürü optimizasyonu (PSO) algoritması kullanılmıştır. Belirlenen etkin özellikler, destek vektör makinesi (SVM) ile sınıflandırılmıştır. Performans kriteri olarak doğruluk ve AUC parametreleri kullanılmıştır. Sonuç olarak, doğruluk değeri 99.9% ve AUC değeri ise 1.00 olarak bulunmuştur. Veri seti ve önerilen model kodları verilen adreste herkese açık hale getirilmiştir: https://github.com/mfatiho/covid-detection-chest-xray CR - Clerc, M. (2010). Particle Swarm Optimization. Particle Swarm Optimization, 1942–1948. https://doi.org/10.1002/9780470612163 CR - Cohen, J. P., Morrison, P., Dao, L., Roth, K., Duong, T. Q., & Ghassemi, M. (2020). COVID-19 Image Data Collection: Prospective Predictions Are the Future. http://arxiv.org/abs/2006.11988 CR - Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. https://doi.org/10.1007/BF00994018 CR - COVID-19 Radiography Database | Kaggle. (n.d.). Retrieved April 14, 2021, from https://www.kaggle.com/tawsifurrahman/covid19-radiography-database CR - Cucinotta, D., & Vanelli, M. (2020). WHO declares COVID-19 a pandemic. Acta Biomedica, 91(1), 157–160. https://doi.org/10.23750/abm.v91i1.9397 CR - Göreke, V., Sarı, V., & Kockanat, S. (2021). A novel classifier architecture based on deep neural network for COVID-19 detection using laboratory findings. Applied Soft Computing, 106, 107329. https://doi.org/10.1016/j.asoc.2021.107329 CR - Guan, W., Ni, Z., Hu, Y., Liang, W., Ou, C., He, J., Liu, L., Shan, H., Lei, C., Hui, D. S. C., Du, B., Li, L., Zeng, G., Yuen, K.-Y., Chen, R., Tang, C., Wang, T., Chen, P., Xiang, J., … Zhong, N. (2020). Clinical Characteristics of Coronavirus Disease 2019 in China. New England Journal of Medicine, 382(18), 1708–1720. https://doi.org/10.1056/nejmoa2002032 CR - Hanbay, D. (2009). An expert system based on least square support vector machines for diagnosis of the valvular heart disease. Expert Systems with Applications, 36(3 PART 1), 4232–4238. https://doi.org/10.1016/j.eswa.2008.04.010 CR - Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5 CR - Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua, 2261–2269. https://doi.org/10.1109/CVPR.2017.243 CR - Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., Ciurea-Ilcus, S., Chute, C., Marklund, H., Haghgoo, B., Ball, R., Shpanskaya, K., Seekins, J., Mong, D. A., Halabi, S. S., Sandberg, J. K., Jones, R., Larson, D. B., Langlotz, C. P., Patel, B. N., Lungren, M. P., & Ng, A. Y. (2019). CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison. http://arxiv.org/abs/1901.07031 CR - Ismael, A. M., & Şengür, A. (2021). Deep learning approaches for COVID-19 detection based on chest X-ray images. Expert Systems with Applications, 164(March 2020). https://doi.org/10.1016/j.eswa.2020.114054 CR - Karakanis, S., & Leontidis, G. (2021). Lightweight deep learning models for detecting COVID-19 from chest X-ray images. Computers in Biology and Medicine, 130(November 2020), 104181. https://doi.org/10.1016/j.compbiomed.2020.104181 CR - Ojala, T., Pietikäinen, M., & Harwood, D. (1996). A comparative study of texture measures with classification based on feature distributions. Pattern Recognition, 29(1), 51–59. https://doi.org/10.1016/0031-3203(95)00067-4 CR - Ojala, T., Pietikäinen, M., & Mäenpää, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 971–987. https://doi.org/10.1109/TPAMI.2002.1017623 CR - Varela-Santos, S., & Melin, P. (2021). A new approach for classifying coronavirus COVID-19 based on its manifestation on chest X-rays using texture features and neural networks. Information Sciences, 545, 403–414. https://doi.org/10.1016/j.ins.2020.09.041 CR - Wu, X., Chen, C., Zhong, M., Wang, J., & Shi, J. (2021). COVID-AL: The diagnosis of COVID-19 with deep active learning. Medical Image Analysis, 68, 101913. https://doi.org/10.1016/j.media.2020.101913 UR - https://doi.org/10.53070/bbd.1172671 L1 - https://dergipark.org.tr/en/download/article-file/2639691 ER -