TY - JOUR T1 - A criterion for nonzero multiplier for Orlicz spaces of an affine group $\mathbb{R}_{+}\times \mathbb{R}$ AU - Üster, Rüya PY - 2023 DA - October DO - 10.15672/hujms.1175682 JF - Hacettepe Journal of Mathematics and Statistics PB - Hacettepe University WT - DergiPark SN - 2651-477X SP - 1198 EP - 1205 VL - 52 IS - 5 LA - en AB - Let $\mathbb{A}=\mathbb{R}_{+}\times \mathbb{R}$ be an affine group with right Haar measure $d\mu$ and $\Phi_i$, $i=1,2$, be Young functions. We show that there exists an isometric isomorphism between the multiplier of the pair $(L^{\Phi_1}(\mathbb{A}),L^{\Phi_2}(\mathbb{A}))$ and $(L^{\Psi_2}(\mathbb{A}),L^{\Psi_1}(\mathbb{A}))$ where $\Psi_i$ are complementary pairs of $\Phi_i$, $i=1,2$, respectively. Moreover we show that under some conditions there is no nonzero multiplier for the pair $(L^{\Phi_1}(\mathbb{A}),L^{\Phi_2}(\mathbb{A}))$, i.e., for an affine group $\mathbb{A}$ only the spaces $M(L^{\Phi_1}(\mathbb{A}),L^{\Phi_2}(\mathbb{A}))$, with a concrete condition, are of any interest. KW - Affine group KW - Orlicz space KW - nonzero multiplier CR - [1] I. Akbarbaglu and S. Maghsoudi, Banach-Orlicz algebras on a locally compact group, Mediterr. J. Math. 10, 1937-1974, 2013. CR - [2] G. Bennet and R. Sharpley, Interpolation of Operators, Academic Press London, 1988. CR - [3] Z.W. Birnbaum and W. Orlicz, Über die Verallgemeinerung des Begriffes der zueinander konjugerten Potenzen, Studia Math. 3, 1-67, 1931. CR - [4] O. Blasco and A. Osançlıol, Notes on bilinear multipliers on Orlicz spaces, Math. Nachr. 292 (12), 2522-2536, 2019. CR - [5] B. Brainerd and R. E. Edwards, Linear operators which commute with translations I. Representation theorems, J. Aust. Math. Soc. 6, 289-327, 1966. CR - [6] A. Cianchi, L. Pick and L. Slavíkova, Sobolev embeddings in Orlicz and Lorentz spaces with measures, J. Math. Anal. Appl. 485, Paper no. 123827, 2020. CR - [7] P. Harjulehto and P. Hästö, Orlicz Spaces and Generalized Orlicz Spaces, Lecture notes in mathematics, 2236, Springer, 2019. CR - [8] E. Kaniuth and K.F. Taylor, Induced representations of locally compact groups, Cambridge University Press, 197, 2013. CR - [9] M.A. Krasnosel’skii and Ja.B. Rutickii, Convex Functions and Orlicz Spaces, Noordhoff, Graningen, 1961. CR - [10] R. Larsen, An Introduction to the Theory of Multipliers, Die Grundlehren der mathematischen Wissenschaften, 175, Springer-Verlag, Berlin, Heidelberg and New York, 1971. CR - [11] A.T. Lau, Closed convex invariant subsets of Lp(G), Trans. Am. Math. Soc. 232, 131-142, 1977. CR - [12] W.A.J. Luxemburg, Banach function spaces, PhD Dissertation, 1955. CR - [13] W.A. Majewski and L.E. Labuschagne, On applications of Orlicz spaces to statistical physics, Ann. Henri Poincaré 15, 1197-1221, 2014. CR - [14] W. Orlicz, Über eine gewisse klasse von Räumen vom Typus B, Bulletin International de l’Academie Polonaise des Sciences et des Lettres Série A, 8, 207-220, 1932. CR - [15] A. Osançlıol and S. Öztop, Weighted Orlicz algebras on locally compact groups, J. Aust. Math. Soc. 99, 399-414, 2015. CR - [16] S. Öztop and E. Samei, Twisted Orlicz algebras I, Studia Math. 236, 271-296, 2017. CR - [17] S. Öztop and E. Samei, Twisted Orlicz algebras II, Math. Nachr. 292, 1122-1136, 2019. CR - [18] M.M. Rao and Z.D. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York, 1991. CR - [19] R. Üster and S. Öztop, Invariant subsets and homological properties of Orlicz modules over group algebras, Taiwan. J. Math. 24, 959-973, 2020. CR - [20] R. Üster, Multipliers for the weighted Orlicz spaces of a locally compact abelian group, Results in Math. 76 (4), Paper No. 183, 2021. CR - [21] J. Wendel, Left centralizers and isomorphisms of group algebras Pac. J. Math. 2, 251-261, 1952. UR - https://doi.org/10.15672/hujms.1175682 L1 - https://dergipark.org.tr/en/download/article-file/2652279 ER -