TY - JOUR T1 - The effect of Cumin Black (Nigella Sativa L.) as bio-based filler on chemical, rheological and mechanical properties of epdm composites AU - Güngör, Ahmet PY - 2023 DA - October DO - 10.31127/tuje.1180753 JF - Turkish Journal of Engineering JO - TUJE PB - Murat YAKAR WT - DergiPark SN - 2587-1366 SP - 279 EP - 285 VL - 7 IS - 4 LA - en AB - One of the significant problems of our time and future is environmental pollution. There are many factors that cause environmental pollution and the main concerns are waste material. Since production, consumption and service activities have increased with rapid industrialization and increasing population. Waste assessment is a process that includes minimization, separate collection at source, intermediate storage, pre-treatment, the establishment of waste transfer centers, recovery and disposal when necessary, which are qualified as outputs as a result of activities such as production, application and consumption. The purpose of waste assessment is to ensure the process of wastes generated by human action without harming the environment and human health. In this context, re-evaluation of agricultural and aquaculture products that turn into waste after being used as a product is important both in terms of economic and environmental pollution. Herein, the use of cumin black pulp, which is waste at the end of black seed oil production, as a bio-based filler material in ethylene-propylene diene rubber (EPDM) was examined. Accordingly, the effects of cumin black pulp added to the EPDM matrix at different content on the rheological, mechanical and crosslinking degree of EPDM were determined. With the use of 10 phr cumin black pulp, the mechanical and rheological properties of EPDM and the degree of crosslinking increased. The tensile strength and elongation at break of the EPDM/CB composites increased up to 11 MPa and 480% with the addition of 10 phr CB, respectively. In addition, it was revealed that the vulcanization parameters were also enhanced. Consequently, it has been concluded as a result of the analysis that the waste cumin black pulp can be used as a filling material in the EPDM matrix. Thus, it has been seen that a product in the state of waste can be recovered and become an economic value. KW - EPDM KW - Cumin Black KW - Bio-based Filler KW - Waste Assessment KW - Rubber CR - 1. Vijayaram, T. R. (2009). A technical review on rubber. International Journal on Design and Manufacturing Technologies, 3(1), 25-37. CR - 2. Wang, G., Li, A., Zhao, W., Xu, Z., Ma, Y., Zhang, F., ... & He, Q. (2021). A review on fabrication methods and research progress of superhydrophobic silicone rubber materials. Advanced Materials Interfaces, 8(1), 2001460. https://doi.org/10.1002/admi.202001460 CR - 3. Shit, S. C., & Shah, P. (2013). A review on silicone rubber. National academy science letters, 36(4), 355-365. https://doi.org/10.1007/s40009-013-0150-2 CR - 4. Güngör, A., Akbay, I. K., & Özdemir, T. (2019). EPDM rubber with hexagonal boron nitride: A thermal neutron shielding composite. Radiation Physics and Chemistry, 165, 108391. https://doi.org/10.1016/j.radphyschem.2019.108391 CR - 5. Da Maia, J. V., Pereira, F. P., Dutra, J. C. N., Mello, S. A. C., Becerra, E. A. O., Massi, M., & da Silva Sobrinho, A. S. (2013). Influence of gas and treatment time on the surface modification of EPDM rubber treated at afterglow microwave plasmas. Applied surface science, 285, 918-926. https://doi.org/10.1016/j.apsusc.2013.09.013 CR - 6. Legge, N. R. (1987). Thermoplastic elastomers. Rubber Chemistry and Technology, 60(3), 83-117. https://doi.org/10.5254/1.3536141 CR - 7. Ginder, J. M., Nichols, M. E., Elie, L. D., & Tardiff, J. L. (1999, July). Magnetorheological elastomers: properties and applications. In Smart Structures and Materials 1999: Smart Materials Technologies (Vol. 3675, pp. 131-138). SPIE. https://doi.org/10.1117/12.352787 CR - 8. Suo, Z. (2010). Theory of dielectric elastomers. Acta Mechanica Solida Sinica, 23(6), 549-578. https://doi.org/10.1016/S0894-9166(11)60004-9 CR - 9. Heinrich, G., Klüppel, M., & Vilgis, T. A. (2002). Reinforcement of elastomers. Current opinion in solid state and materials science, 6(3), 195-203. https://doi.org/10.1016/S1359-0286(02)00030-X CR - 10. Datta, R. N. (2008). Rubber-curing systems. In Current Topics in Elastomers Research (pp. 415-462). CRC Press. https://doi.org/10.1201/9781420007183-14 CR - 11. Kruželák, J., Sýkora, R., & Hudec, I. (2017). Vulcanization of rubber compounds with peroxide curing systems. Rubber chemistry and technology, 90(1), 60-88. https://doi.org/10.5254/RCT.16.83758 CR - 12. Greene, J. P. (2021). Elastomers and Rubbers. Automotive Plastics and Composits; Elsevier: Amsterdam, The Netherlands, 127-147. https://doi.org/10.1016/b978-0-12-818008-2.00016-7 CR - 13. Stelescu, M. D., Manaila, E., & Craciun, G. (2013). Vulcanization of ethylene‐propylene–terpolymer‐based rubber mixtures by radiation processing. Journal of Applied Polymer Science, 128(4), 2325-2336. https://doi.org/10.1002/app.38231 CR - 14. Akbay, İ. K., Güngör, A., & Özdemir, T. (2017). Optimization of the vulcanization parameters for ethylene–propylene–diene termonomer (EPDM)/ground waste tyre composite using response surface methodology. Polymer Bulletin, 74, 5095-5109. https://doi.org/10.1007/S00289-017-2001-7 CR - 15. Ravishankar, P. S. (2012). Treatise on EPDM. Rubber chemistry and technology, 85(3), 327-349. https://doi.org/10.5254/rct.12.87993 CR - 16. Abdul Salim, Z. A. S., Hassan, A., & Ismail, H. (2018). A review on hybrid fillers in rubber composites. Polymer-Plastics Technology and Engineering, 57(6), 523-539. https://doi.org/10.1080/03602559.2017.1329432 CR - 17. Zhang, Y., Ge, S., Tang, B., Koga, T., Rafailovich, M. H., Sokolov, J. C., ... & Nguyen, D. (2001). Effect of carbon black and silica fillers in elastomer blends. Macromolecules, 34(20), 7056-7065. https://doi.org/10.1021/MA010183P CR - 18. Wang, M. J., Gray, C. A., Reznek, S. A., Mahmud, K., & Kutsovsky, Y. (2003). Carbon black. Kirk‐Othmer Encyclopedia of Chemical Technology. https://doi.org/10.1002/0471238961.0301180204011414.a01.pub2 CR - 19. Chaudhuri, I., Fruijtier-Pölloth, C., Ngiewih, Y., & Levy, L. (2018). Evaluating the evidence on genotoxicity and reproductive toxicity of carbon black: a critical review. Critical reviews in toxicology, 48(2), 143-169. https://doi.org/10.1080/10408444.2017.1391746 CR - 20. Di Ianni, E., Jacobsen, N. R., Vogel, U. B., & Møller, P. (2022). Systematic review on primary and secondary genotoxicity of carbon black nanoparticles in mammalian cells and animals. Mutation Research/Reviews in Mutation Research, 108441. https://doi.org/10.1016/J.MRREV.2022.108441 CR - 21. Mokhothu, T. H., John, M. J., & John, M. J. (2016). Bio-based fillers for environmentally friendly composites. Handbook of Composites from Renewable Materials; Vijay, KT, Manju, KT, Michael, RK, Eds, 243-270. https://doi.org/10.1002/9781119441632.ch10 CR - 22. Butt, M. S., & Sultan, M. T. (2010). Nigella sativa: reduces the risk of various maladies. Critical reviews in food science and nutrition, 50(7), 654-665. https://doi.org/10.1080/10408390902768797 CR - 23. Hanafy, M. S. M., & Hatem, M. E. (1991). Studies on the antimicrobial activity of Nigella sativa seed (black cumin). Journal of ethnopharmacology, 34(2-3), 275-278. https://doi.org/10.1016/0378-8741(91)90047-H CR - 24. Ahmad, A., Husain, A., Mujeeb, M., Khan, S. A., Najmi, A. K., Siddique, N. A., ... & Anwar, F. (2013). A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pacific journal of tropical biomedicine, 3(5), 337-352. https://doi.org/10.1016/S2221-1691(13)60075-1 CR - 25. Nergiz, C., & Ötleş, S. (1993). Chemical composition of Nigella sativa L. seeds. Food chemistry, 48(3), 259-261. https://doi.org/10.1016/0308-8146(93)90137-5 CR - 26. Akiba, M. A., & Hashim, A. S. (1997). Vulcanization and crosslinking in elastomers. Progress in polymer science, 22(3), 475-521. https://doi.org/10.1016/S0079-6700(96)00015-9 CR - 27. Coran, A. Y. (2003). Chemistry of the vulcanization and protection of elastomers: A review of the achievements. Journal of Applied Polymer Science, 87(1), 24-30 CR - 28. Smith, T. L. (1963). Ultimate tensile properties of elastomers. I. Characterization by a time and temperature independent failure envelope. Journal of Polymer Science Part A: General Papers, 1(12), 3597-3615. https://doi.org/10.1002/POL.1963.100011207 CR - 29. Smith, T. L. (1964). Ultimate tensile properties of elastomers. II. Comparison of failure envelopes for unfilled vulcanizates. Rubber Chemistry and Technology, 37(4), 792-807. https://doi.org/10.5254/1.3540378 CR - 30. Ermilov, A. S., & Nurullaev, E. M. (2012). Mechanical properties of elastomers filled with solid particles. Mechanics of composite Materials, 48(3), 243-252. https://doi.org/10.1007/S11029-012-9271-9 UR - https://doi.org/10.31127/tuje.1180753 L1 - https://dergipark.org.tr/en/download/article-file/2673686 ER -