TY - JOUR T1 - Liquid Sensor Based on Interaction between Decoupled Waveguides and a Cavity with Transverse Offset in a Phononic Crystal TT - Bir Fononik Kristalde Ayrışmış Dalga Kılavuzları ile Dikine Ofsetli Kavite Arasında Eşleşmeye Dayalı Sıvı Sensörü AU - Körözlü, Nurettin AU - Günay, Mehmet AU - Biçer, Ahmet AU - Çiçek, Ahmet PY - 2022 DA - November DO - 10.31590/ejosat.1183694 JF - Avrupa Bilim ve Teknoloji Dergisi JO - EJOSAT PB - Osman SAĞDIÇ WT - DergiPark SN - 2148-2683 SP - 393 EP - 399 IS - 41 LA - en AB - A liquid sensor employing a cavity in the form of a point defect with a transverse offset along the normal bisector of a barrier at the center of a linear waveguide in a two-dimensional phononic crystal, which gives rise to two decoupled waveguides, is proposed. The phononic crystal consists of cylindrical steel rods with 2.0 mm radius in water, arranged with 4.2 mm lattice constant in the square lattice. Linear waveguides are formed by removing a single row from the phononic crystal, whereas the point defect is formed by substituting a single cylindrical steel rod by a polyethylene tubing comprising the analyte of interest. The cavity acts as a cross-bridge between the waveguides through the interaction of the linear defect mode in the input waveguide with the point defect mode, which in turn interacts with the output waveguide mode. Finite-element method simulations reveal that at frequencies around 200 kHz, a sharp peak with a quality factor of the order of 1000 occurs in the transmission spectrum of the system, where resonant transmission occurs. In case of determining the ratio of methanol in ethanol as an instance, it is found that the peak frequency exhibits a quadratic shift with the molar ratio of methanol. On the other hand, the transmission value decreases exponentially with increasing methanol ratio at the frequency of 196.19 kHz, which is the peak frequency for pure ethanol. The proposed sensing scheme can be utilized in many applications such as the identification of fake beverages and in high-throughput concentration measurements in the industry. KW - Phononic crystal KW - waveguide KW - point defect KW - liquid sensor KW - ethanol KW - methanol KW - finite-element method. N2 - İki boyutlu bir fononik kristaldeki doğrusal dalga kılavuzunun merkezinde iki adet ayrışmış dalga kılavuzu oluşumuna sebep olan bariyerin dik ortayı üzerinde konumlanmış nokta kusuru formundaki bir kovuk içeren sıvı sensörü önerilmiştir. Fononik kristal, su içerisinde örgü sabiti 4.2 mm olacak biçimde kare örgü düzeninde dizilmiş 2.0 mm yarıçaplı silindirik çelik çubuklardan oluşmaktadır. Doğrusal dalga kılavuzları fononik kristalden tek bir sıranın çıkarılmasıyla oluşturulurken nokta kusuru, tek bir silindirik çelik çubuğun ilgili analiti içeren bir polietilen hortum ile değiştirilmesiyle oluşturulmuştur. Giriş dalga kılavuzundaki doğrusal kusur modunun daha sonra çıkış dalga kılavuzu moduyla etkileşen nokta kusur moduyla etkileşimi vasıtasıyla kovuk, iki dalga kılavuzu arasında çapraz bir köprü görevi görmektedir. Sonlu elemanlar yöntemi simülasyonlarının sonuçları, 200 kHz civarındaki frekanslarda sistemin geçirim spektrumunda 1000 mertebesinde kalite faktörüne sahip keskin bir pikin gözlendiği rezonans iletiminin oluştuğunu göstermiştir. Örnek olarak etanol içinde metanol oranı belirlenmesinde, pik frekansının molar metanol oranının karesiyle değiştiği belirlenmiştir. Öte yandan, saf etanol için belirlenen 196.19 kHz pik frekansında, geçirim değeri artan metanol oranıyla üstel olarak azalmaktadır. Önerilen algılama yaklaşımı, sahte içeceklerin tanımlanması ve endüstride yüksek verimli konsantrasyon ölçümleri gibi pek çok uygulamada kullanılabilir. CR - Aly, A. H., & Mehaney, A. (2017). Phononic crystals with one-dimensional defect as sensor materials. Indian Journal of Physics, 91(9), 1021-1028. https://doi.org/10.1007/s12648-017-0989-z CR - Bamberger, J. A., & Greenwood, M. S. (2004). Measuring fluid and slurry density and solids concentration non-invasively. Ultrasonics, 42(1-9), 563-567. https://doi.org/10.1016/j.ultras.2004.01.032 CR - Biçer, A., Durmuslar, A. S., Korozlu, N., & Cicek, A. (2022). An Acoustic Add-Drop Filter in a Phononic Crystal for High-Sensitivity Detection of Methanol in Ethanol in the Liquid Phase. IEEE Sensors Journal, 22(15), 14799-14805. https://doi.org/10.1109/JSEN.2022.3185926 CR - Brown, J., Slutsky, L., Nelson, K., & Cheng, L.-T. (1988). Velocity of sound and equations of state for methanol and ethanol in a diamond-anvil cell. Science, 241(4861), 65-67. https://doi.org/10.1126/science.241.4861.65 CR - COMSOL, Inc. (2022). COMSOL-Software for Multiphysics Simulation. Retrieved 30.09.2022 from https://www.comsol.com CR - Givoli, D., & Neta, B. (2003). High-order non-reflecting boundary scheme for time-dependent waves. Journal of Computational Physics, 186(1), 24-46. https://doi.org/10. 1016/S0021-9991(03)00005-6 CR - Iglesias, M., Orge, B., Domínguez, M., & Tojo, J. (1998). Mixing properties of the binary mixtures of acetone, methanol, ethanol, and 2-butanone at 298.15 K. Physics and Chemistry of Liquids, 37(1), 9-29. https://doi.org/10.1080/00319109808032796 CR - Ke, M., Zubtsov, M., & Lucklum, R. (2011). Sub-wavelength phononic crystal liquid sensor. Journal of Applied Physics, 110(2), 026101. https://doi.org/10.1063/1.3610391 CR - Khelif, A., Choujaa, A., Benchabane, S., Djafari-Rouhani, B., & Laude, V. (2004). Guiding and bending of acoustic waves in highly confined phononic crystal waveguides. Applied Physics Letters, 84(22), 4400-4402. https://doi.org/10.1063/1.1757642 CR - Kuo, I., Hete, B., & Shung, K. (1990). A novel method for the measurement of acoustic speed. The Journal of the Acoustical Society of America, 88(4), 1679-1682. https://doi.org/10.1063/1.400242 CR - Kushwaha, M. S., Halevi, P., Dobrzynski, L., & Djafari-Rouhani, B. (1993). Acoustic band structure of periodic elastic composites. Physical Review Letters, 71(13), 2022. https://doi.org/10.1103/PhysRevLett.71.2022 CR - Larrarte, F., Bardiaux, J. B., Battaglia, P., & Joannis, C. (2008). Acoustic Doppler flow-meters: a proposal to characterize their technical parameters. Flow Measurement and Instrumentation, 19(5), 261-267. https://doi.org/10.1016/j.flowmeasinst.2008.01.001 CR - Lucklum, R., Ke, M., & Zubtsov, M. (2012). Two-dimensional phononic crystal sensor based on a cavity mode. Sensors and Actuators B: Chemical, 171, 271-277. https://doi.org/10.1016/j.snb.2012.03.063 CR - Lucklum, R., & Li, J. (2009). Phononic crystals for liquid sensor applications. Measurement Science and Technology, 20(12), 124014. https://doi.org/10.1088/0957-0233/20/12/124014 CR - Lucklum, R., Li, J., & Zubtsov, M. (2010). 1D and 2D phononic crystal sensors. Procedia Engineering, 5, 436-439. https://doi.org/10.1016/j.proeng.2010.09.140 CR - Lucklum, R., & Mukhin, N. (2021). Enhanced sensitivity of resonant liquid sensors by phononic crystals. Journal of Applied Physics, 130(2), 024508. https://doi.org/10.1063/5.0046847 CR - Mehaney, A. (2019). Biodiesel physical properties detection using one-dimensional phononic crystal sensor. Acoustical Physics, 65(4), 374-378. https://doi.org/10.1134/S1063771019040122 CR - Mehaney, A., & Ahmed, A. M. (2020). Theoretical design of porous phononic crystal sensor for detecting CO2 pollutions in air. Physica E: Low-Dimensional Systems and Nanostructures, 124, 114353. https://doi.org/10.1016/j.physe.2020.114353 CR - Moradi, P., Gharibi, H., Fard, A. M., & Mehaney, A. (2021). Four-channel ultrasonic demultiplexer based on two-dimensional phononic crystal towards high efficient liquid sensor. Physica Scripta, 96(12), 125713. https://doi.org/10.1088/1402-4896/ac2c23 CR - Mukhin, N., Kutia, M., Aman, A., Steinmann, U., & Lucklum, R. (2022). Two-Dimensional Phononic Crystal Based Sensor for Characterization of Mixtures and Heterogeneous Liquids. Sensors, 22(7), 2816. https://doi.org/10.3390/s22072816 CR - Oseev, A., Zubtsov, M., & Lucklum, R. (2013). Gasoline properties determination with phononic crystal cavity sensor. Sensors and Actuators B: Chemical, 189, 208-212. https://doi.org/10.1016/j.snb.2013.03.072 CR - Salman, A., Ates, E., Biçer, A., Deniz, S., Cicek, A., & Korozlu, N. (2021). Determination of Methanol Concentration in Ethanol in Liquid Phase by a Phononic Crystal Mach-Zehnder Interferometer. Physica Scripta, 96(12), 125032. https://doi.org/10.1088/1402-4896/ac3d4b CR - Salman, A., Kaya, O. A., & Cicek, A. (2014). Determination of concentration of ethanol in water by a linear waveguide in a 2-dimensional phononic crystal slab. Sensors and Actuators A: Physical, 208, 50-55. https://doi.org/10.1016/j.sna.2013.12.037 CR - Salman, A., Kaya, O. A., Cicek, A., & Ulug, B. (2015). Low-concentration liquid sensing by an acoustic Mach–Zehnder interferometer in a two-dimensional phononic crystal. Journal of Physics D: Applied Physics, 48(25), 255301. https://doi.org/10.1088/0022-3727/48/25/255301 CR - Vasseur, J. O., Deymier, P. A., Beaugeois, M., Pennec, Y., Djafari-Rouhani, B., & Prevost, D. (2005). Experimental observation of resonant filtering in a two-dimensional phononic crystal waveguide. Zeitschrift für Kristallographie-Crystalline Materials, 220(9-10), 829-835. https://doi.org/10.1524/zkri.2005.220.9-10.829 CR - Villa-Arango, S., Torres, R., Kyriacou, P., & Lucklum, R. (2017). Fully-disposable multilayered phononic crystal liquid sensor with symmetry reduction and a resonant cavity. Measurement, 102, 20-25. https://doi.org/10.1016/j.measurement.2017.01.051 CR - Wu, F., Hou, Z., Liu, Z., & Liu, Y. (2001). Point defect states in two-dimensional phononic crystals. Physics Letters A, 292(3), 198-202. https://doi.org/10.1016/S0375-9601(01)00800-3 CR - Zaki, S. E., Mehaney, A., Hassanein, H. M., & Aly, A. H. (2021). High-performance liquid sensor based one-dimensional phononic crystal with demultiplexing capability. Materials Today Communications, 26, 102045. https://doi.org/10.1016/j.mtcomm.2021.102045 CR - Zaremanesh, M., Carpentier, L., Gharibi, H., Bahrami, A., Mehaney, A., Gueddida, A., Lucklum, R., Djafari-Rouhani, B., & Pennec, Y. (2021). Temperature biosensor based on triangular lattice phononic crystals. APL Materials, 9(6), 061114. https://doi.org/10.1063/5.0054155 CR - Zubtsov, M., Lucklum, R., Ke, M., Oseev, A., Grundmann, R., Henning, B., & Hempel, U. (2012). 2D phononic crystal sensor with normal incidence of sound. Sensors and Actuators A: Physical, 186, 118-124. https://doi.org/10.1016/j.sna.2012.03.017 UR - https://doi.org/10.31590/ejosat.1183694 L1 - https://dergipark.org.tr/en/download/article-file/2685852 ER -