TY - JOUR T1 - Some Important Properties of Almost Kenmotsu $\left( \kappa,\mu,\nu\right) -$Space on the Concircular Curvature Tensor AU - Mert, Tuğba AU - Atçeken, Mehmet PY - 2023 DA - March Y2 - 2023 DO - 10.33401/fujma.1191851 JF - Fundamental Journal of Mathematics and Applications JO - Fundam. J. Math. Appl. PB - Fuat USTA WT - DergiPark SN - 2645-8845 SP - 51 EP - 60 VL - 6 IS - 1 LA - en AB - In this article, pseudoparallel submanifolds for almost Kenmotsu $\left( \kappa,\mu,\nu\right) -$space are investigated. The almost Kenmotsu $\left( \kappa,\mu,\nu\right) -$space is considered on the concircular curvature tensor. Submanifolds of these manifolds with properties such as concircular pseudoparallel, concircular $2-$pseudoparallel, concircular Ricci generalized pseudoparallel, and concircular $2-$Ricci generalized pseudoparallel has been characterized. Necessary and sufficient conditions are given for the invariant submanifolds of almost Kenmotsu $\left( \kappa,\mu,\nu\right) -$space to be total geodesic according to the behavior of the $\kappa,\mu,\nu$ functions. KW - Lorentzian manifold KW - Para-Kenmotsu manifold KW - Pseudoparallel submanifold CR - [1] E. Boeckx, A full classification of contact metric (k;m)􀀀spaces, Illinois J. Math., 44(1) (2000), 212–219. CR - [2] D. E. Blair, T. Koufogiorgos, B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math., 91 (1995), 189–214. CR - [3] T. Koufogiorgos, M. Markellos, V. J. Papantoniou, The harmonicity of the Reeb vector fields on contact 3􀀀manifolds, Pasific J. Math., 234(2) (2008), 325-344. CR - [4] A. Carriazo, V. Martin-Molina, Almost cosymplectic and almost Kenmotsu (k;m;n)􀀀Spaces, Mediterr. J. Math., 10 (2013), 1551-1571. CR - [5] P. Dacko, Z. Olszak, On almost cosymplectic (k;m;n)􀀀spaces, Banach Center Publ., 69(1) (2005), 211-220. CR - [6] M. Atçeken, Certain results on invariant submanifolds of an almost Kenmotsu (k;m;n)􀀀space, Arab. J. Math., 10 (2021), 543-554. CR - [7] A. Bejancu, N. Papaghuic, Semi-invariant submanifolds of a Sasakian manifold, Annal Alexandru Ioan Cuza Univ. Ias¸i Math., 27 (1981), 163-170. CR - [8] M. Atçeken, P. Uygun, Characterizations for totally geodesic submanifolds of (k;m)-paracontact metric manifolds, Korean J. Math., 28(3) (2021), 555-571. CR - [9] A. De, A note on the paper on invariant submanifolds of LP-Sasakian manifolds, Extracta Math., 28(1) (2013), 33-36. CR - [10] M. Atçeken, T. Mert, Characterizations for totally geodesic submanifolds of a K-paracontact manifold, AIMS Math., 6(7) (2021),7320-7332. CR - [11] D. Chinea, P.S. Prestelo, Invariant submanifolds of a trans-Sasakian manifold, Publ. Math. Debrecen, 38(1-2) (1991), 103-109. CR - [12] M. Atçeken, Some results on invariant submanifolds of Lorentzian para-Kenmotsu manifolds, Korean J. Math., 30(1) (2022), 175-185. CR - [13] S.K. Hui, V.N. Mishra, T. Pal, Vandana, Some classes of invariant submanifolds of (LCS)n􀀀Manifolds, Italian J.P. Appl. Math., 39 (2018), 359-372. CR - [14] V. Venkatesha, S. Basavarajappa, Invariant submanifolds of LP-Saakian manifolds, Khayyam J. Math., 6(1) (2020), 16-26. CR - [15] S. Sular, C. Özgür, C. Murathan, Pseudoparallel anti-invariant submanifolds of Kenmotsu manifolds, Hacet. J. Math. Stat., 39(4) (2010), 535-543. CR - [16] P. Uygun, S. Dirik, M. Atceken, T. Mert, Some Characterizations Invariant Submanifolds of A (k;m)􀀀Para Contact Space, J. Eng. R. App. Sci., 11(1) (2022), 1967-1972. CR - [17] M. Atçeken, G. Yüca, Some results on invariant submanifolds of an almost Kenmotsu (k;m;n)􀀀space, Honam Math. J., 43(4) (2021), 655-665. CR - [18] R. Prasad, Pankaj, On (k;m)􀀀Manifolds with Quasi-conformal Curvature Tensor, Int. J. Contemp. Math. Sciences, 34(5) 2010, 1663- 1676. UR - https://doi.org/10.33401/fujma.1191851 L1 - https://dergipark.org.tr/en/download/article-file/2719698 ER -