TY - JOUR T1 - Simulation of Load Behavior Based on Perturb-Observation Method in Non-Isolated Boost Converter for Maximum Power Point Tracking of Thermoelectric Generators AU - Mamur, Hayati AU - Akyıldız, Çiğdem AU - Üstüner, Mehmet Ali PY - 2023 DA - March Y2 - 2023 DO - 10.30516/bilgesci.1201697 JF - Bilge International Journal of Science and Technology Research JO - bilgesci PB - Kutbilge Akademisyenler Derneği WT - DergiPark SN - 2651-401X SP - 70 EP - 77 VL - 7 IS - 1 LA - en AB - The efficiency of thermoelectric generators (TEGs) is quite low. To operate the TEGs at the maximum power point (MPP), the internal resistance of the connected load and the TEG must be equal. This is not always possible. For this, converters containing the maximum power point tracking (MPPT) algorithm tracking MPP are placed between the TEG and the load. These converters cannot perform MPPT on every connected load value. The aim of this study is to investigate at which load values MPPT can be performed in non-isolated boost converters by using perturb & observation (P&O) method. For this purpose, a 50 W converter was designed with a 45.76 W TEG in MATLAB/Simulink environment. Load resistance value has been increased starting from the minimum value up to 5.84 ohm being the internal resistance value of the TEG. For this case, the amount of error in MPPT was large up to the internal resistance value of the TEG. In other words, the P&O algorithm could not perform MPPT. When the load resistance value started from 5.84 ohms and increased to larger values, MPPT could be performed by means of the non-isolated boost converter with the P&O algorithm. KW - Thermoelectric generator KW - MPPT KW - Boost converter KW - Load limit CR - Ahmad, M. E., Numan, A. H., Mahmood, D. Y. (2022). A comparative study of perturb and observe (P&O) and incremental conductance (INC) PV MPPT techniques at different radiation and temperature conditions. Engineering and Technology Journal, 40(02), 376-385. http://doi.org/10.30684/etj.v40i2.2189 CR - Al-Diab, A., Sourkounis, C. (2010, May). Variable step size P&O MPPT algorithm for PV systems. In 2010 12th International conference on optimization of electrical and electronic equipment (pp. 1097-1102). IEEE. http://doi.org/10.1109/OPTIM.2010.5510441 CR - Armin Razmjoo, A., Sumper, A., Davarpanah, A. (2020). Energy sustainability analysis based on SDGs for developing countries. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(9), 1041-1056. http://doi.org/10.1080/15567036.2019.1602215 CR - Attar, A., Lee, H., Snyder, G. J. (2020). Optimum load resistance for a thermoelectric generator system. Energy Conversion and Management, 226, 113490. http://doi.org/10.1016/j.enconman.2020.113490 CR - Benhadouga, S., Meddad, M., Eddiai, A., Boukhetala, D., Khenfer, R. (2019). Sliding Mode Control for MPPT of a Thermogenerator. Journal of Electronic Materials, 48, 2103-2111. https://doi.org/10.1007/s11664-019-06997-y CR - Bijukumar, B., Raam, A. G. K., Ganesan, S. I., Nagamani, C., Reddy, M. J. B. (2019). MPPT algorithm for thermoelectric generators based on parabolic extrapolation. IET Generation, Transmission & Distribution, 13(6), 821-828. http://doi.org/10.1049/iet-gtd.2017.2007 CR - Bhuiyan, M. R. A., Mamur, H., Üstüner, M. A., Dilmaç, Ö. F., (2022). Current and future trend opportunities of thermoelectric generator applications in waste heat recovery. Gazi University Journal of Science, 896-915. http://doi.org/10.35378/gujs.934901 CR - Bond, M., Park, J. D. (2015). Current-sensorless power estimation and MPPT implementation for thermoelectric generators. IEEE Transactions on Industrial Electronics, 62(9), 5539-5548. http://doi.org/10.1109/TIE.2015.2414393 CR - Dileep, G., Singh, S. N. (2017). Selection of non-isolated DC-DC converters for solar photovoltaic system. Renewable and Sustainable Energy Reviews, 76, 1230-1247. http://doi.org/10.1016/j.rser.2017.03.130 CR - Jouhara, H., Khordehgah, N., Almahmoud, S., Delpech, B., Chauhan, A., Tassou, S. A. (2018). Waste heat recovery technologies and applications. Thermal Science and Engineering Progress, 6, 268-289. http://doi.org/10.1016/j.tsep.2018.04.017 CR - Khan, M. K., Zafar, M. H., Mansoor, M., Mirza, A. F., Khan, U. A., & Khan, N. M. (2022). Green energy extraction for sustainable development: A novel MPPT technique for hybrid PV-TEG system. Sustainable Energy Technologies and Assessments, 53, 102388. https://doi.org/10.1016/j.seta.2022.102388 CR - Mamur, H., Ahiska, R. (2015). Application of a DC–DC boost converter with maximum power point tracking for low power thermoelectric generators. Energy conversion and management, 97, 265-272. http://doi.org/10.1016/j.enconman.2015.03.068 CR - Mamur, H., Coban, Y. (2020a). Detailed modeling of a thermoelectric generator for maximum power point tracking. Turkish Journal of Electrical Engineering & Computer Sciences, 28(1), 124-139. http://doi.org/10.3906/elk-1907-166 CR - Mamur, H., Çoban, Y. (2020b). Termoelektrik jeneratörler için alçaltan-yükselten çeviricili maksimum güç noktası takibi benzetimi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(5), 916-926. http://doi.org/10.5505/pajes.2019.92488 CR - Mamur, H., Dilmaç, Ö. F., Begum, J., Bhuiyan, M. R. A. (2021). Thermoelectric generators act as renewable energy sources. Cleaner Materials, 2, 100030. CR - Mamur, H., Üstüner, M. A. (2021) Improved perturb and observe maxımum power poınt trackıng method wıth thermoelectrıc generator model. International Scientific Conferance, Gabrova. CR - Mamur, H., Üstüner, M. A., Bhuiyan, M. R. A., (2022). Future perspective and current situation of maximum power point tracking methods in thermoelectric generators. Sustainable Energy Technologies and Assessments, 50, 101824. http://doi.org/10.1016/j.clema.2021.100030 CR - Montecucco, A., Knox, A. R. (2014). Maximum power point tracking converter based on the open-circuit voltage method for thermoelectric generators. IEEE Transactions on Power Electronics, 30(2), 828-839. http://doi.org/10.1109/TPEL.2014.2313294 CR - Pilakkat, D., Kanthalakshmi, S. (2019). An improved P&O algorithm integrated with artificial bee colony for photovoltaic systems under partial shading conditions. Solar Energy, 178, 37-47. http://doi.org/10.1016/j.solener.2018.12.008 CR - Sarbu, I., Sebarchievici, C. (2018). A comprehensive review of thermal energy storage. Sustainability, 10(1), 191. http://doi.org/10.3390/su10010191 CR - Taghvaee, M. H., Radzi, M. A. M., Moosavain, S. M., Hizam, H., Marhaban, M. H., (2013). A current and future study on non-isolated DC–DC converters for photovoltaic applications. Renewable and Sustainable Energy Reviews, 17, 216-227. http://doi.org/10.1016/j.rser.2012.09.023 CR - Tsai, H. L., Lin, J. M. (2010). Model building and simulation of thermoelectric module using Matlab/Simulink. Journal of Electronic Materials, 39(9), 2105. http://doi.org/10.1007/s11664-009-0994-x CR - Qasim, A. M., Alwan, T. N., PraveenKumar, S., Velkin, V. I., Agyekum, E. B. (2021). A New maximum power point tracking technique for thermoelectric generator modules. Inventions, 6(4), 88. http://doi.org/10.3390/inventions6040088 CR - Mamur, H., Çiğdem, A., Üstüner, M.A. (2022, Sep). Investigation of Load Dependent Behavior of Boost Converter with Perturb and Observe Maximum Power Point Tracking for Thermoelectric Generators, In International Conferences on Science and Technology Engineering Sciences and Technology (ICONST EST 2022). CR - Zafar, M. H., Khan, N. M., Mansoor, M., & Khan, U. A. (2022). Towards green energy for sustainable development: Machine learning based MPPT approach for thermoelectric generator. Journal of Cleaner Production, 351, 131591. https://doi.org/10.1016/j.jclepro.2022.131591 UR - https://doi.org/10.30516/bilgesci.1201697 L1 - https://dergipark.org.tr/en/download/article-file/2760741 ER -