TY - JOUR T1 - ISM 2.4 GHz Band Antenna Model for RF Energy Harvesting Systems TT - RF Enerji Hasatlama Sistemleri için ISM 2.4 GHz Bandı Anten Modeli AU - Göçen, Cem AU - Akdag, Ismail AU - Belen, Mehmet Ali AU - Mahouti, Peyman AU - Kaya, Adnan AU - Palandöken, Merih PY - 2022 DA - November DO - 10.31590/ejosat.1202107 JF - Avrupa Bilim ve Teknoloji Dergisi JO - EJOSAT PB - Osman SAĞDIÇ WT - DergiPark SN - 2148-2683 SP - 32 EP - 35 IS - 43 LA - en AB - In today’s world many technological devices can operate with very low power levels. Despite this situation, these devices need to be fed with a sustainable energy source and constantly charged. This low level power need can be attained from ambient electromagnetic waves from any radio frequency sources. Radio frequency energy harvesting systems can be offered to feed these type of devices and these systems have been used in many areas in recent years. In this study, an antenna designment that can be used in RF energy harvesting systems is emphasized. Within the scope of this study, an RF energy harvesting antenna operating at 2.4 GHz frequency has been modeled. The electromagnetic performance and antenna fundamental parameters of the RF energy harvesting antenna are numerically calculated using a commercial 3D based on a transmission line matrix (TLM) and the finite integration technique (FIT). The physical extents of the antenna are 35 x 28 x 1.6 mm. The proposed RF energy harvesting antenna has 2.1 dBi directivty and %98.1 radiation efficiency performance parameters. The antenna proposed here can be have usage areas such as an RF energy harvesting antenna for low-power medical devices, self sustainable wireless devices in Internet of Things (IoT), Wireless Body Sensor Network (WBSN) devices. KW - RF Energy Harvesting KW - ISM Band KW - Microstrip Antenna KW - 2.4 GHz KW - Rectifying Antenna N2 - Günümüz dünyasında birçok teknolojik cihaz çok düşük güç seviyelerinde çalışabilmektedir. Bu duruma rağmen bu cihazların sürdürülebilir bir enerji kaynağı ile beslenmesi ve sürekli şarj edilmesi gerekmektedir. Bu düşük seviyeli güç ihtiyacı, herhangi bir radyo frekansı kaynağından gelen elektromanyetik dalgalarından elde edilebilir. Bu tür cihazları beslemek için radyo frekans enerji hasatlama sistemleri sunulabilir ve bu sistemler son yıllarda birçok alanda kullanılmaktadır. Bu çalışmada, RF enerji hasatlama sistemlerinde kullanılabilecek bir anten tasarımı üzerinde durulmuştur, 2.4 GHz frekansında çalışan bir RF enerji hasatlama anteni modellenmiştir. RF enerji toplama anteninin elektromanyetik performansı ve anten temel parametreleri, iletim hattı matrisine (TLM) ve sonlu entegrasyon tekniğine (FIT) dayalı ticari 3D tabanlı simulator kullanılarak sayısal olarak hesaplanmıştır. Antenin fiziksel boyutları 35 x 28 x 1.6 mm'dir. Önerilen RF enerji hasat anteni, 2.1 dBi yönlülüğe ve %98.1 radyasyon verimliliği performans parametrelerine sahiptir. Burada önerilen anten, düşük güçlü tıbbi cihazlar için RF enerji toplama anteni, Nesnelerin İnterneti (IoT) içinde kendi kendini sürdürebilen kablosuz cihazlar, Kablosuz Vücut Sensör Ağı (WBSN) cihazları gibi kullanım alanlarına sahip olabilir. CR - Brown, W. C. (1996). The history of wireless power transmission. Solar Energy, 56(1), 3–21. https://doi.org/https://doi.org/10.1016/0038-092X(95)00080-B CR - Jiang, W., Zhang, B., Yan, L., & Liu, C. (2014). A 2.45 GHz rectenna in a near-field wireless power transmission system on hundred-watt level. 2014 IEEE MTT-S International Microwave Symposium (IMS2014), 1–4. https://doi.org/10.1109/MWSYM.2014.6848644 CR - Kaur, K. P., Upadhyaya, T., Palandoken, M., & Gocen, C. (2019). Ultrathin dual-layer triple-band flexible microwave metamaterial absorber for energy harvesting applications. International Journal of RF and Microwave Computer-Aided Engineering, 29(1), e21646. https://doi.org/https://doi.org/10.1002/mmce.21646 CR - Palandoken, M, Gocen, C., Kaya, A., Gunes, F., Baytore, C., & Can, F. C. (2018). A Novel Split-Ring Resonator and Voltage Multiplier based Rectenna Design for 900 MHz Energy Harvesting Applications. Radioengineering, 27(3), 711–717. https://doi.org/10.13164/re.2018.0711 CR - Palandoken, Merih, & Gocen, C. (2019). A modified Hilbert fractal resonator based rectenna design for GSM900 band RF energy harvesting applications. International Journal of RF and Microwave Computer-Aided Engineering, 29(1), e21643. https://doi.org/https://doi.org/10.1002/mmce.21643 CR - Serdijn, W. A., Mansano, A. L. R., & Stoopman, M. (2014). Chapter 4.2 - Introduction to RF Energy Harvesting (E. Sazonov & M. R. B. T.-W. S. Neuman (eds.); pp. 299–322). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-418662-0.00019-2 CR - Sun, H., Guo, Y., He, M., & Zhong, Z. (2012). Design of a High-Efficiency 2.45-GHz Rectenna for Low-Input-Power Energy Harvesting. IEEE Antennas and Wireless Propagation Letters, 11, 929–932. https://doi.org/10.1109/LAWP.2012.2212232 CR - Tran, L.-G., Cha, H.-K., & Park, W.-T. (2017). RF power harvesting: a review on designing methodologies and applications. Micro and Nano Systems Letters, 5(1), 14. https://doi.org/10.1186/s40486-017-0051-0 CR - Zeng, M., Andrenko, A. S., Liu, X., Li, Z., & Tan, H.-Z. (2017). A Compact Fractal Loop Rectenna for RF Energy Harvesting. IEEE Antennas and Wireless Propagation Letters, 16, 2424–2427. https://doi.org/10.1109/LAWP.2017.2722460 CR - Zhang, F., Nam, H., & Lee, J.-C. (2009). A novel compact folded dipole architecture for 2.45 GHz rectenna application. 2009 Asia Pacific Microwave Conference, 2766–2769. https://doi.org/10.1109/APMC.2009.5385366 UR - https://doi.org/10.31590/ejosat.1202107 L1 - https://dergipark.org.tr/en/download/article-file/2762507 ER -