TY - JOUR T1 - Eğrisel Alt Başlıklı Çelik Kirişlerin Ön Germeli Davranışının İncelenmesi TT - Analyzing Pre-Stressed Steel Beams with Lower Flange Arch Shape AU - Polat, Erkan AU - Çağlayan, Barlas Özden PY - 2023 DA - July DO - 10.29137/umagd.1217636 JF - International Journal of Engineering Research and Development JO - IJERAD PB - Kirikkale University WT - DergiPark SN - 1308-5506 SP - 615 EP - 625 VL - 15 IS - 2 LA - tr AB - Bu çalışmada, daha önce teorik ve deneysel çalışmaları yapılan alt başlığı eğrisel, ön germeli kirişin, kiriş orta kesit yüksekliğine göre burkulma davranışı incelenip ideal kesit yüksekliğinin belirlenmesi amaçlanmıştır. Bunun için Sap 2000 programında 250 civarı sonlu elemanlar modeli hazırlanarak burkulma analizleri yapılmıştır. İlaveten FEMAP (Nastran) Sonlu elemanlar analizi programı ile de deneysel modele uygun solid sonlu elemanlar modeli oluşturulup nonlineer burkulma analizi yapılmıştır. Yapılan analizler sonucunda kiriş alt başlığının eğriselliği arttıkça burkulma katsayısının arttığı görülmüştür. Ön germe kuvvetine ve açıklığa bağlı olarak en büyük burkulma katsayısı, kiriş orta yüksekliği (h) / kenar yüksekliği (H) oranına göre sabit bir noktada kalmamakta. Bununla beraber yaklaşık h/H = 0,6 oranından düşük değerlerden itibaren, burkulma yükü katsayısının belirgin bir şekilde arttığı gözlenmiştir. KW - Öngermeli çelik kiriş KW - Burkulma analizi KW - Sonlu elemanlar analizi KW - Kemer Kiriş N2 - In this study, it is aimed to determine the ideal section height according to the beam mid-section height by examining the buckling behavior of pre-stressed beam with the lower flange arch shape of which theoretical and experimental studies have been done before, For this, about 250 finite element models were prepared in the Sap 2000 program and buckling analyzes were performed. In addition, with the FEMAP (Nastran) Finite Element Analysis program, a solid finite element model prepared and nonlinear buckling analysis was performed. As a result of the analysis made, it was seen that the buckling coefficient increased as the curvature of the lower beam flange increased. Depending on the pre-tension force and span, the largest buckling coefficient does not remain at a fixed point with respect to the beam mid-height (h) / edge height (H) ratio. However, it was observed that the buckling load coefficient increased significantly from values lower than about h/H = 0,6. CR - AISC-360 (2016). Specification for Structural Steel Buildings, ANSI / AISC 360-16, CR - Austin W.J. & Ross J. (1976). Elastic buckling of arches under symmetrical loading, J. Struct. Div. 102 , 1085–1095. CR - Barnett R.L. (1957). Prestressed truss beams, J. Struct. Div. 83, 1191-1-1191–22. CR - Bharathi C.V., Kumar C.V. (2016). Effect of external prestressing on steel arches, Int. Res. J. Eng. Technol. 1382–1387. CR - Bradford M.A. (1991). Buckling of prestressed steel girders, Eng. Journal–American Inst. Steel Constr. 28, 98–101. CR - Circular Arches, J. Struct. Eng. 141, 04015006. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001240. CR - Coff L.,(1950). Prestressing of structural steel, Civ. Eng. 20, 64–65. CR - Constr. Steel Res. 66, 125–132. https://doi.org/10.1016/j.jcsr.2009.07.013. CR - Des. 28 , 1988–1993. https://doi.org/10.1016/j.matdes.2006.04.007. CR - Dou C., Guo Y.-L., Zhao S.-Y. & Pi Y.-L. (2015). Experimental Investigation into Flexural-Torsional Ultimate Resistance of Steel CR - Dou C., Guo Y.-F., Jiang Z.-Q., Gao W. & Pi Y.-L. (2018). In-plane buckling and design of steel tubular truss arches, Thin-Walled CR - Struct. 130, 613–621. https://doi.org/10.1016/j.tws.2018.06.024. CR - Magnel G. (1950). Prestressed steel structures, Struct. Eng. 28, 285–295. CR - Magnel G. (1954). Long prestressed steel truss erected for Belgian hangar, Civ. Enginner. 24 . 38–39. CR - Nazir C. (2003). Prestressed Steel Arch Bridge, J. Inst. Eng. CR - Ozcatalbas Y. & Ozer A. (2007). Investigation of fabrication and mechanical properties of internally prestressed steel I beam, Mater. CR - Park S., Kim T., Kim K. & Hong S. (2010). Flexural behavior of steel I-beam prestressed with externally unbonded tendons, J. CR - Petrov A.M. (1965). On the parameters of prestressed steel beam, IVSIA. 9–14. CR - Petrov A.M. (1967), On the choice of cross-section of prestressed steel beam, IVSIA. 3–6. CR - Pi Y.-L. & Trahair N.S. (1999). In-Plane Buckling and Design of Steel Arches, J. Struct. Eng. 125, 1291–1298. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:11(1291). CR - Polat E. Caglayan B. (2018) Finite element analysis of pre-stressed steel arch beams. https://doi.org/10.20528/cjsmec.2018.03.003 CR - Ren Y., Wang Y., Wang B., Ban H., Song J. & Su G. (2018). Flexural behavior of steel deep beams prestressed with externally unbonded straight multi-tendons, Thin-Walled Struct. 131, 519–530. https://doi.org/10.1016/j.tws.2018.07.022. CR - Tochacek M. & Mehta C.L. (1972), No Title, J. Struct. Div. 98, 1273–1289. CR - Whipple S. (1847). A work on brigge building, Utica, N.Y.: H.H. Curtiss, printer. UR - https://doi.org/10.29137/umagd.1217636 L1 - https://dergipark.org.tr/en/download/article-file/2825722 ER -