TY - JOUR T1 - Modulo periodic Poisson stable solutions of dynamic equations on a time scale AU - Fen, Mehmet Onur AU - Tokmak Fen, Fatma PY - 2023 DA - December Y2 - 2023 DO - 10.31801/cfsuasmas.1220565 JF - Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics JO - Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. PB - Ankara University WT - DergiPark SN - 1303-5991 SP - 907 EP - 920 VL - 72 IS - 4 LA - en AB - Existence, uniqueness, and asymptotic stability of modulo periodic Poisson stable solutions of dynamic equations on a periodic time scale are investigated. The model under investigation involves a term which is constructed via a Poisson stable sequence. Novel definitions for Poisson stable as well as modulo periodic Poisson stable functions on time scales are given, and the reduction technique to systems of impulsive differential equations is utilized to achieve the main result. An example which confirms the theoretical results is provided. KW - Modulo periodic Poisson stability KW - dynamic equations KW - impulsive differential equations KW - periodic time scale CR - Agarwal, R., Bohner, M., O’Regan, D., Peterson, A., Dynamic equations on time scales: a survey, J. Comput. Appl. Math., 141(1-2) (2002), 1–26. https://doi.org/10.1016/S0377-0427(01)00432-0 CR - Akhmet, M., Principles of Discontinuous Dynamical Systems, Springer, New York, 2010. CR - Akhmet, M., Fen, M. O., Poincar´e chaos and unpredictable functions, Commun. Nonlinear Sci. Numer. Simulat., 48 (2017), 85–94. https://doi.org/10.1016/j.cnsns.2016.12.015 CR - Akhmet, M., Fen, M. O., Non-autonomous equations with unpredictable solutions, Commun. Nonlinear Sci. Numer. Simulat., 59 (2018), 657–670. CR - Akhmet, M., Tleubergenova, M., Zhamanshin, A., Modulo periodic Poisson stable solutions of quasilinear differential equations, Entropy, 23 (2021), 1535. https://doi.org/10.3390/e23111535 CR - Akhmet, M. U., Turan, M., The differential equations on time scales through impulsive differential equations, Nonlinear Anal., 65(11) (2006), 2043–2060. https://doi.org/10.1016/j.na.2005.12.042 CR - Akhmet, M. U., Turan, M., Differential equations on variable time scales, Nonlinear Anal., 70(3) (2009), 1175–1192. https://doi.org/10.1016/j.na.2008.02.020 CR - Birkhoff, G., Dynamical Systems, Amer. Math. Soc. Colloq. Publ., vol. 9, Amer. Math. Soc., Providence, R. I., 1966. CR - Bochner, S., Continuous mappings of almost automorphic and almost automorphic functions, Proc. Natl. Acad. Sci. U.S.A., 52(4) (1964), 907–910. https://doi.org/10.1073/pnas.52.4.907 CR - Bohner, M., Fan, M., Zhang, J., Periodicity of scalar dynamic equations and applications to population models, J. Math. Anal. Appl., 330(1) (2007), 1–9. https://doi.org/10.1016/j.jmaa.2006.04.084 CR - Bohner, M., Peterson, A., Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, 2001. CR - del R. Cantero, M., Perez, P. L., Smoler, M., Etchegoyen, C. V., Cantiello, H. F., Electrical oscillations in two-dimensional microtubular structures, Sci. Rep., 6 (2016), 27143. https://doi.org/10.1038/ CR - Cheban, D., Liu, Z., Periodic, quasi-periodic, almost periodic, almost automorphic, Birkhoff recurrent and Poisson stable solutions for stochastic differential equations, J. Differ. Equ., 269(4) (2020), 3652–3685. https://doi.org/10.1016/j.jde.2020.03.014 CR - Corduneanu, C., Almost Periodic Oscillations and Waves, Springer, New York, 2009. CR - Doelling, K. B., Assaneo, M. F., Neural oscillations are a start toward understanding brain activity rather than the end, PLoS Biol., 19 (2021), e3001234. https://doi.org/10.1371/journal.pbio.3001234 CR - Du, B., Hu, X., Ge, W., Periodic solution of a neutral delay model of single-species population growth on time scales, Commun. Nonlinear Sci. Numer. Simulat., 15(2) (2010), 394–400. https://doi.org/10.1016/j.cnsns.2009.03.014 CR - Fen, M. O., Tokmak Fen, F., SICNNs with Li-Yorke chaotic outputs on a time scale, Neurocomputing, 237 (2017), 158–165. https://doi.org/10.1016/j.neucom.2016.09.073 CR - Gulev, S. K., Latif, M., The origins of a climate oscillation, Nature, 521 (2015), 428–430. https://doi.org/10.1038/521428a CR - Hilger, S., Ein Maßkettenkalk¨ul mit Anwendung auf Zentrumsmanningfaltigkeiten, PhD thesis, Universitat Wurzburg, 1988. CR - Kaufmann, E. R., Raffoul, Y. N., Periodic solutions for a neutral nonlinear dynamical equation on a time scale, J. Math. Anal. Appl., 319(1) (2006), 315-325. https://doi.org/10.1016/j.jmaa.2006.01.063 CR - Knight, R. A., Recurrent and Poisson stable flows, Proc. Am. Math. Soc., 83(1) (1981), 49-53. https://doi.org/10.2307/2043889 CR - Lakshmikantham, V., Sivasundaram, S., Kaymakçalan, B., Dynamic Systems on Measure Chains, Kluwer Academic Publishers, Netherlands, 1996. CR - Li, Y., Periodic solutions of non-autonomous cellular neural networks with impulses and delays on time scales, IMA J. Math. Control Inf., 31(2) (2014), 273–293. https://doi.org/10.1093/imamci/dnt012 CR - Li, Y, Shen, S., Compact almost automorphic function on time scales and its application, Qual. Theory Dyn. Syst., 20 (2021), Article number: 86. https://doi.org/10.1007/s12346-021-00522-5 CR - Li, Z., Zhang, T., Permanence for Leslie-Gower predator-prey system with feedback controls on time scales, Quaest. Math., 44(10) (2021), 1393–1407. https://doi.org/10.2989/16073606.2020.1799256 CR - Liao, Q., Li, B., Li, Y., Permanence and almost periodic solutions for an n-species Lotka-Volterra food chain system on time scales, Asian-Eur. J. Math., 8(2) (2015), 1550027. https://doi.org/10.1142/S1793557115500278 CR - Liu, X., Liu, Z. X., Poisson stable solutions for stochastic differential equations with Levy noise, Acta Math. Sin. Engl., 38 (2022), 22–54. https://doi.org/10.1007/s10114-021-0107-1 CR - Pchelintsev, A. N., On the Poisson stability to study a fourth-order dynamical system with quadratic nonlinearities, Mathematics, 9 (2021), 2057. https://doi.org/10.3390/math9172057 CR - Poincare, H., Les M´ethodes Nouvelles de la Mecanique C´eleste, Volume 1, Gauthier-Villars, Paris, 1892. CR - Samoilenko, A. M., Perestyuk, N. A., Impulsive Differential Equations, World Scientific, Singapore, 1995. CR - Samuelson, P. A., Generalized predator-prey oscillations in ecological and economic equilibrium, Proc. Natl. Acad. Sci. U.S.A., 68(5) (1971), 980–983. https://doi.org/10.1073/pnas.68.5.980 CR - Seiffertt, J., Adaptive resonance theory in the time scales calculus, Neural Netw., 120 (2019), 32–39. https://doi.org/10.1016/j.neunet.2019.08.010 CR - Sell, G. R., Topological Dynamics and Ordinary Differential Equations, Van Nostrand Reinhold Company, London, 1971. CR - Thomas, D., Weedermann, M., Billings, L., Hoffacker, J., Washington-Allen, R. A., When to spray: a time-scale calculus approach to controlling the impact of West Nile virus, Ecol. Soc., 14(2) (2009), 21. https://doi.org/10.5751/ES-03006-140221 CR - Tisdell, C. C., Zaidi, A., Basic qualitative and quantitative results for solutions to nonlinear, dynamic equations on time scales with an application to economic modelling, Nonlinear Anal. Theory Methods Appl., 68(11) (2008), 3504–3524. https://doi.org/10.1016/j.na.2007.03.043 CR - Vance, W., Ross, J., Entrainment, phase resetting, and quenching of chemical oscillations, J. Chem. Phys., 103(7) (1995), 2472. https://doi.org/10.1063/1.469669 CR - Veech, W. A., Almost automorphic functions, Proc. Natl. Acad. Sci. U.S.A. 49(4) (1963), 462–464. https://doi.org/10.1073/pnas.49.4.462 UR - https://doi.org/10.31801/cfsuasmas.1220565 L1 - https://dergipark.org.tr/en/download/article-file/2837979 ER -