TY - JOUR T1 - Improvement Of Heat Conductivity Coefficient Of Fly Ash-Based Geopolymer Brick By Substitution Of Blast Furnace Slag TT - Uçucu Kül Bazlı Geopolimer Tuğlanın Yüksek Fırın Cürufu İkamesiyle Isı İletim Katsayısının İyileştirilmesi AU - Al-hasanı, Hussein Jasım Mohammed AU - Çağlar, Hakan AU - Çağlar, Arzu PY - 2023 DA - June Y2 - 2023 DO - 10.51764/smutgd.1247965 JF - Sürdürülebilir Mühendislik Uygulamaları ve Teknolojik Gelişmeler Dergisi JO - SMUTGD PB - Hakan ÇAĞLAR WT - DergiPark SN - 2651-3544 SP - 23 EP - 33 VL - 6 IS - 1 LA - en AB - Brick, one of the oldest materials known in history, is a building material that has come up to the present day by continuing its development over time. However, with the development of technology, the brick has been continuously revised. Recently, researchers have turned to the production of geopolymer bricks by substituting waste materials into the brick structure.In this study it is aimed to research the effect of blast furnace slag substitution on the heat conduction coefficient of fly ash-based geopolymer brick. In the study, blast furnace slag was replaced with clay in different proportions (10, 30, 50, and 70%). Furthermore, 20% of the fly ash was kept constant, 8 and 10 M of sodium hydroxide for alkaline activation, and 4% and 8% of calcium hydroxide were used to produce geopolymer bricks.The heat conductivity coefficient determination experiment was applied to the samples. As a result, it was observed that the heat conductivity coefficient decreased with the increase of blast furnace slag, sodium hydroxide, and calcium hydroxide substitution. The best results were obtained from brick samples produced from 70% blast furnace slag, 10 M sodium hydroxide, and 8% calcium hydroxide with 0.26 W/mK. In addition, it has been concluded that geopolymer brick is an effective way to dispose of industrial waste. KW - Blast furnace slag KW - fly ash KW - geopolymer brick KW - brick KW - Yüksek fırın cürufu KW - uçucu kül KW - geopolimer tuğla KW - tuğla N2 - Tarihin bilinen en eski malzemelerinden olan tuğla, zamanla gelişimini sürdürerek günümüze kadar gelmeyi başaran bir yapı malzemesidir. Teknolojinin gelişmesiyle tuğla sürekli revize edilmiştir. Son zamanlarda araştırmacılar, tuğla bünyesine atık malzemeler ikame ederek geopolimer tuğla üretimine yönelmiştir.Bu çalışmada, uçucu kül bazlı geopolimer tuğlaya yüksek fırın cürufu ikamesinin ısı iletim katsayısına etkisinin araştırılması amaçlanmıştır. Çalışmada, farklı oranlarda (%10, 30, 50 ve 70) yüksek fırın cürufu kil ile yer değiştirilmiştir. %20 oranında uçucu kül sabit tutulmuş, Alkali aktivasyon için 8 ve 10 M sodyum hidroksit, %4 ve %8 oranında kalsiyum hidroksit kullanılarak geopolimer tuğla üretimi yapılmıştır. Numunelere ısı iletim katsayısı tayini deneyi uygulanmıştır. Sonuç olarak; yüksek fırın cürufu, sodyum hidroksit ve kalsiyum hidroksit ikamesinin artmasıyla ısı iletim katsayısında azalma olduğu görülmüştür. En iyi sonuç, 0,26 W/mK ile %70 oranında yüksek fırın cürufu, 10 M sodyum hidroksit ve %8 kalsiyum hidroksitten üretilen tuğla numunelerinden elde edilmiştir. Bunun yanı sıra geopolimer tuğlanın endüstriyel atıkların bertaraf edilmesi için etkin bir yol olduğu sonucuna varılmıştır. CR - Tayeh, B.A., Al Saffar, D.M., Askar, L.K., Jubeh, A.I. (2019). “Effect of incorporating pottery and bottom ash as partial replacement of cement”, Karbala International Journal of Modern Science, 5 (4), 9. DOI: 10.33640/2405-609X.1220 CR - Al Saffar, D.M., Tayeh, B.A. (2018). “Influence of pottery clay in cement mortar and concrete mixture: a review”, International Journal of Engineering & Technology, 7(4), 67–71. CR - Zeyad, A.M., Johari, M.A.M., Abutaleb, A., Tayeh, B.A. (2021). “The effect of steam curing regimes on the chloride resistance and pore size of high–strength green concrete”, Construction and Building Materials, 280, 122409. https://doi.org/10.1016/j.conbuildmat.2021.122409 CR - Faried, A.S., Mostafa, S.A., Tayeh, B.A., Tawfik, T.A. (2021). “The effect of using nano rice husk ash of different burning degrees on ultra-high-performance concrete properties”, Construction and Building Materials, 290 (2021), 123279. https://doi.org/10.1016/j.conbuildmat.2021.123279. Tayeh, B.A., Hadzima-Nyarko, M., Zeyad, A.M, Al-Harazin, S.Z. (2021). “Properties and durability of concrete with olive waste ash as a partial cement replacement”, Advanced Concrete Construction, 11 (1), 59–71. DOI: https://doi.org/10.12989/acc.2021.11.1.059 CR - Amin, M., Zeyad, A.M., Tayeh, B.A., Agwa, I.S. (2021). “Engineering properties of self-cured normal and high strength concrete produced using polyethylene glycol and porous ceramic waste as coarse aggregate”, Construction and Building Materials, 299 (2021), 124243. https://doi.org/10.1016/j.conbuildmat.2021.124243. CR - Calis, G., Yildizel, S.A., Erzin, S., Tayeh, B.A. (2021). “Evaluation and optimisation of foam concrete containing ground calcium carbonate and glass fibre (experimental and modelling study)”, Case Studies in Construction Materials, 15 (2021), e00625. CR - Hamada, H., Tayeh, B., Yahaya, F., Muthusamy, K., Al-Attar, A. (2020). “Effects of nano-palm oil fuel ash and nano-eggshell powder on concrete”, Construction and Building Materials, 261 (2020), 119790. https://doi.org/10.1016/j.conbuildmat.2020.119790. CR - Zhang, L. (2013). “Production of bricks from waste materials – a review”, Construction and Building Materials, 47 (2013) 643–655. https://doi.org/10.1016/j.conbuildmat.2013.05.043 CR - Ahmari, S., Zhang, L.J.C. (2012). “Production of eco-friendly bricks from copper mine tailings through geopolymerization”, Construction and Building Materials, 29 (2012), 323–331. https://doi.org/10.1016/j.conbuildmat.2011.10.048 CR - Kumar, A., Kumar, S.J.C. (2013). “Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization, Construction and Building Materials, 38 (2013) 865–871. https://doi.org/10.1016/j.conbuildmat.2012.09.013 CR - Wang, L., Sun, H., Sun, Z., Ma, E. (2016). “New technology and application of brick making with coal fly ash”, Journal of Material Cycles and Waste Management, 18 (4) (2016) 763–770. DOI 10.1007/s10163-015-0368-9. CR - Sukmak, P., Horpibulsuk, S., Shen, S.L.C.J. (2013). “Strength development in clay–fly ash geopolymer”, Construction and Building Materials, 40 (2013) 566–574. https://doi.org/10.1016/j.conbuildmat.2012.11.015 CR - Abdullah, M., Ibrahim, V., Tahir, M. (2015). “The properties and durability of fly ash-based geopolymeric masonry bricks. Eco-Efficient Masonry Bricks and Blocks, Elsevier, 2015, 273–287. https://doi.org/10.1016/B978-1-78242-305-8.00012-7 CR - Zawrah, M., Gado, R., Feltin, N., Ducourtieux, S., Devoille, L.J.P.S. (2016). Recycling and utilization assessment of waste fired clay bricks (Grog) with granulated blastfurnace slag for geopolymer production, Process Safety and Environmental Protection, 103 (2016), 237–251. CR - Venugopal, K., Sasalatti, V. (2021). Development of alkali activated geopolymer masonry blocks. IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2016. M.M. Ahmed et al. Case Studies in Construction Materials 15 (2021) e00737 13 CR - Apithanyasai, S., Nooaek, P., Supakata, N.J.E.J. (2018). The utilization of concrete residue with electric arc furnace slag in the production of geopolymer bricks, Engıneerıng Journal, 22 (1) (2018) 1–14. DOI:10.4186/ej.2018.22.1.1 CR - Ahmari, S., Zhang, L.J.C., (2013). “Durability and leaching behavior of mine tailings-based geopolymer bricks”, Construction and Building Materials, 44 (2013) 743–750. https://doi.org/10.1016/j.conbuildmat.2013.03.075 CR - Ahmari, S., Zhang, L.J.C., (2013). “Utilization of cement kiln dust (CKD) to enhance mine tailings-based geopolymer bricks”, Construction and Building Materials, 40 (2013) 1002–1011. https://doi.org/10.1016/j.conbuildmat.2012.11.069 CR - Madani, H., Ramezanianpour, A., Shahbazinia, M., Ahmadi, E.J.C. (2020). “Geopolymer bricks made from less active waste materials”, Construction and Building Materials, 247 (2020) 118441. https://doi.org/10.1016/j.conbuildmat.2020.118441 CR - Tayeh, B.A., Alyousef, R., Alabduljabbar, H., Alaskar, A. (2021). “ Recycling of rice husk waste for a sustainable concrete: a critical review”, Journal of Cleaner Production, 312 (2021), 127734. CR - Kuranchie, F.A., Shukla, S.K., Habibi, D.J. (2016). “Utilisation of iron ore mine tailings for the production of geopolymer bricks”, International Journal of Mining, 30 (2) (2016) 92–114. https://doi.org/10.1080/17480930.2014.993834 CR - Apithanyasai, S., Supakata, N., Papong, S.J.H. (2020). “The potential of industrial waste: using foundry sand with fly ash and electric arc furnace slag for geopolymer brick production”, Heliyon, 6 (3) (2020) e03697. https://doi.org/10.1016/j.heliyon.2020.e03697Get Davidovits J. (2008). “Geopolymers_inorganic polymeric new materials”. Journal of Thermal Analysis and Calorimetry, 37(8), 1633–56. CR - Davidovits J. High-Alkali Cements for 21st Century Concretes. ACI Special Publication; 1994. 144. CR - Wongpa J, Kiattikomol K, Jaturapitakkul C, Chindaprasirt P. (2010). “Compressive strength, modulus of elasticity, and water permeability of inorganic polymer concrete”. Materials & Design, 31(10), 4748–54. https://doi.org/10.1016/j.matdes.2010.05.012 CR - O’Connor SJ, Mac Kenzie KJD. (2010). “A new hydroxide-based synthesis method for inorganic polymers”. Journal of Materials Science, 45(12), 3284–8. DOI 10.1007/s10853-010-4340-8 CR - Kani EN, Allahverdi A. (2009). “Effects of curing time and temperature on strength development of inorganic polymeric binder based on natural pozzolan”. Journal of Materials Science, 44(12), 3088–97. CR - Hardjito D, Wallah SE, Sumajouw DMJ, Rangan BV. (2010). “On the development of fly ash-based geopolymer concrete”. ACI Materials Journal, 10(6), 467–72. CR - Bakharev T, Sanjayan JG, Cheng Yi-Bing. (1999). “Alkali activation of Australian slag cements”. Cement and Concrete Research, 29(1), 113–20. https://doi.org/10.1016/S0008-8846(98)00170-7 CR - Barbosa VFF, Mackenzie KJD. (2003). “Thermal behaviour of inorganic geopolymers and composites derived from sodium polysalate”. Materials Research Bulletin, 38(2), 319–31. CR - Wu H-C, Sun P. (2007). “New building materials from fly ash-based lightweight inorganic polymer”. Construction and Building Materials, 21(1), 211–7. https://doi.org/10.1016/j.conbuildmat.2005.06.052 Duxson PF-JA, Provis J, Lukey G, Palomo A, Van Deventer J. (2007). “Geopolymer technology: the current state of the art”. Journal of Material Science, 42(9), 2917–33. CR - Barbosa VFF, Mackenzie KJD, Thaumaturgo C. (2000). “Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers”. International Journal of Inorganic Materials, 2(4), 309–17. https://doi.org/10.1016/S1466-6049(00)00041-6 CR - Swanepoel JC, Strydom CA. (2002). “Utilisation of fly ash in a geopolymeric material”. Applied Geochemistry, 17(8),1143–8. https://doi.org/10.1016/S0883-2927(02)00005-7 CR - Surul, O., Bilir, T., Gholampour, A., Sutcu, M., Ozbakkaloglu, T., Gencel, O. (2020), “Recycle of ground granulated blast furnace slag and fly ash on eco-friendly brick production”, European Journal of Environmental and Civil Engineering, 26(5), 1738-1756. https://doi.org/10.1080/19648189.2020.1731714 CR - Apithanyasai, S., Supakata, N., Papong, S. (2020), “The potential of industrial waste: using foundry sand with fly ash and electric arc furnace slag for geopolymer brick production”, Heliyon 6, (2020), e03697. https://doi.org/10.1016/j.heliyon.2020.e03697Get CR - Ganesh, A.C., Muthukannan, M., Aakassh, S., Subramanaian, B.P. (2020), “Optimisation of bio medical waste ash in GGBS based of geopolymer concrete” IOP Conf. Series: Materials Science and Engineering 872 (2020) 012154. DOI 10.1088/1757-899X/872/1/012163 CR - Youssef, N., Rabenantoandro, A.Z., Dakhli, Z., Chapiseau, C., Waendendries, F., Chehade, F.H., Lafhaj, Z. (2019). “Reuse of waste bricks: a new generation of geopolymer bricks”, SN Applied Sciences, 1252 (2019), | https://doi.org/10.1007/s42452-019-1209-6. CR - Jindal, B.B., Sharma, R. (2020). “The effect of nanomaterials on properties of geopolymers derived from industrial by-products: A state-of-the-art review”, Construction and Building Materials, 252 (2020), 119028. https://doi.org/10.1016/j.conbuildmat.2020.119028Get CR - Web ileti. https://emboykimya.com.tr/urunler/sodyum-hidroksit/. Date of Access: 20.12.2022 CR - Web iletti. https://emboykimya.com.tr/urunler/kalsiyum-hidroksit/. Date of Access: 20.12.2022 CR - Al Amara, S.N., Çağlar, A. (2022). “Determination Of The Heat Conduction Coefficient Of Boron Waste, Fly Ash Based Geopolymer Bricks”, Current Vıew Of Buıldıng Materıal, Lambert akademic publishing. CR - Ahmed, M.M., El-Naggar, K.A.M., Tarek, D., Ragab, A., Sameh, H., Zeyad, A.M., Tayeh, B.A., Maafa, İ.M., Yousef, A. (2021), “Fabrication of thermal insulation geopolymer bricks using ferrosilicon slag and alumina waste”, Case Studies in Construction Materials, 15(2021)e00737. https://doi.org/10.1016/j.cscm.2021.e00737 CR - TS EN 772,1, (2012), “Methods of test for masonry units- Part 1: Determination of compressive strength”, Turkish Standardization Institute, Ankara. CR - Feng, J., Zhang, R., Gong, L., Li, Y., Cao, W., Cheng, X. (2015). “Development of porous fly ash-based geopolymer with low thermal conductivity”, Materials and Design, 65 (2015), 529-533. https://doi.org/10.1016/j.matdes.2014.09.024 UR - https://doi.org/10.51764/smutgd.1247965 L1 - https://dergipark.org.tr/en/download/article-file/2940028 ER -