TY - JOUR T1 - Chen Inequalities for Isotropic Submanifolds in Pseudo-Riemannian Space Forms AU - Mirea, Marius PY - 2023 DA - April Y2 - 2023 DO - 10.36890/iejg.1259890 JF - International Electronic Journal of Geometry JO - Int. Electron. J. Geom. PB - Kazım İlarslan WT - DergiPark SN - 1307-5624 SP - 201 EP - 207 VL - 16 IS - 1 LA - en AB - The class of isotropic submanifolds in pseudo-Riemannian manifolds is a distinguished familyof submanifolds; they have been studied by several authors. In this article we establish Cheninequalities for isotropic immersions. An example of an isotropic immersion for which the equalitycase in the Chen first inequality holds is given. KW - Pseudo-Riemannian manifold KW - isotropic immersion KW - isotropic submanifold KW - spacelike submanifold KW - Chen inequalities CR - [1] Cabrerizo, J.L., Fernández, M., Gómez, J.S.: Isotropic submanifolds of pseudo-Riemannian spaces. J. Geom. Physics. 69 (2), 1915-1924 (2012). CR - [2] Chen, B.-Y.: Some pinching and classification theorems for minimal submanifolds. Archiv Math. 60, 568-578 (1993). CR - [3] Chen, B.-Y.: Some new obstructions to minimal and Lagrangian isometric immersions. Japanese J. Math. 26, 105-127 (2000). CR - [4] Ciobanu, A., Mirea, M.: New inequalities on isotropic spacelike submanfolds in psuedo-Riemannian space forms. Romanian J. Math. Comp. Sci. 11 (2), 48-52 (2021). CR - [5] Hu, Z., Li, H.: Willmore Lagrangian spheres in the complex Euclidean space Cn. Annals of Global Analysis and Geometry. 25 (1), 73–98 (2004). CR - [6] O’Neill, B.: Isotropic and Kaehler immersions. Canad. J. Math. 17, 907-915 (1965). UR - https://doi.org/10.36890/iejg.1259890 L1 - https://dergipark.org.tr/en/download/article-file/2988509 ER -