TY - JOUR T1 - A Classification of Parallel Normalized Biconservative Submanifold in the Minkowski Space in Arbitrary Dimension AU - Kayhan, Aykut PY - 2023 DA - October Y2 - 2023 DO - 10.36890/iejg.1263203 JF - International Electronic Journal of Geometry JO - Int. Electron. J. Geom. PB - Kazım İlarslan WT - DergiPark SN - 1307-5624 SP - 653 EP - 664 VL - 16 IS - 2 LA - en AB - IIn this paper, we examine PNMCV-MCGL biconservative submanifold in a Minkowski space $\mathbb{E}_1^{n+2}$ with nondiagonalizable shape operator, where PNMCV-MCGL submanifold denotes a submanifold with parallel normalized mean curvaturevector and the mean curvature whose gradient is lightlike ($\langle\nabla H,\nabla H\rangle=0$). We obtain some conditions about connection forms, principal curvatures and some results about them. Then we use them to obtain a classification of such submanifolds. Finally, we showed that there is no biconservative such submanifold in Minkowski space of arbitrary dimension. KW - Biconservative submanifolds KW - non-diagonalizable shape operator KW - Minkowski space KW - biconservative isometric immersions CR - [1] Caddeo, R., Montaldo, S., Oniciuc, C., Piu, P.: Surfaces in the three-dimensional space forms with divergence-free stress-bienergy tensor. Annali di Matematica Pura ed Applicata 193, 529–550 (2014). CR - [2] Chen, B. Y. : On the surface with parallel mean curvature vector. Indiana University Mathematics Journal. 22, 655-666 (1973). CR - [3] Chen, B.Y.: Surfaces with parallel normalized mean curvature vector. Monatshefte für Mathematik. 90, 185-194 (1980). CR - [4] Chen, B.Y.: Some open problems and conjectures on submanifold of finite type . Soochow Journal of Mathematics. 17, 169-188 (1991). CR - [5] Chen, B.Y., Ishikawa, S.: Biharmonic surfaces in pseudo-Euclidean spaces. Kyushu Journal of Mathematics. 2 (45), 323-347 (1991). CR - [6] Chen, B.Y., Ishikawa, S.: Biharmonic pseudo-Riemannian submanifolds in pseudo-Euclidean spaces. Kyushu Journal of Mathematics. 52, 167-185 (1998). CR - [7] Chen, B.Y.: Chen’s biharmonic conjecture and submanifolds with parallel normalized mean curvature vector. Mathematics. 7, 710 (2019). CR - [8] Du L., Zhang, J.: Biharmonic Submanifolds with Parallel Normalized Mean Curvature Vector Field in Pseudo-Riemannian Space Forms. Bulletin of the Malaysian Mathematical Sciences Society. 42, 1469-1484 (2019). CR - [9] Du, L.: Classification of f-biharmonic submanifolds in Lorentz space forms. Open Mathematics. 19, 1299-1314 (2021). CR - [10] Fu, Y.: Explicit classification of biconservative surfaces in Lorentz 3-space forms. Annali di Matematica Pura ed Applicata. 194, 805-822 (2015). CR - [11] Fu, Y.: On bi-conservative surfaces in Minkowski 3-space. Journal of Geometry and Physics. 66, 71-79 (2013). CR - [12] Magid, M. A.: Lorentzian Isoparametric Hypersurfaces. Pacific Journal of Mathematics. 118, 165-197 (1995). CR - [13] Montaldo, S., Oniciuc C., Ratto, A. :, Biconservative surfaces. Journal of Geometric Analysis. 26, 313-329 (2016). CR - [14] Montaldo, S., Oniciuc C., Ratto, A.: Proper biconservative immersions into the Euclidean space. Annali di Matematica Pura ed Applicata. 195, 403-422 (2016). CR - [15]Şen, R.: Biconservative Submanifolds with Parallel Normalized Mean Curvature Vector Field in Euclidean Space. Bulletin of the Iranian Mathematical Society. 48, 3185-3194 (2022). CR - [16]Şen, R., Turgay, N.C.: Biharmonic PNMCV submanifolds in Euclidean 5-space, Turkish Journal of Mathematics. 47 , 296-316 (2023). CR - [17] Turgay, N.C.: A classifcation of biharmonic hypersurfaces in the Minkowski spaces of arbitrary dimension. Hacettepe Journal of Mathematics and Statistics. 45, 1125-1134 (2016). UR - https://doi.org/10.36890/iejg.1263203 L1 - https://dergipark.org.tr/en/download/article-file/3002565 ER -