TY - JOUR T1 - Effects of the Aronia Melanocarpa extract action on the activity of mitochondrial creatine kinase under immobilization stress in old rats TT - Effects of the Aronia Melanocarpa extract action on the activity of mitochondrial creatine kinase under immobilization stress in old rats AU - Shvets, Volodymyr AU - Maslak, Hanna AU - Davydov, Vadim AU - Berest, Halyna AU - Nosulenko, Inna AU - Voskoboinik, Oleksii AU - Omelianchyk, Liudmyla AU - Brazhko, Oleksandr PY - 2023 DA - December Y2 - 2023 DO - 10.52794/hujpharm.1269999 JF - Hacettepe University Journal of the Faculty of Pharmacy JO - HUJPHARM PB - Hacettepe University WT - DergiPark SN - 2458-8806 SP - 333 EP - 339 VL - 43 IS - 4 LA - en AB - The effects of the Aronia melanocarpa extract on mitochondrial creatine kinase isoenzyme of the old rats heart under stress were studied. The research was performed on 30 male rats of the Wistar line. For expiriment were used old (22–25 months) animals. It was established, that the injection of the extract (Aronia melanocarpa) at a dose of 0.2 g/kg 60 minutes before the immobilization has limited sensitivity of the heart muscle’s CPK-MT to damaging stress factors (reduced medium pH, increased medium tonicity, increased concentration of calcium, activated free radical processes), and helps the normalization of its kinetic properties, has an influence on the myocardium’s kinetic supply. Thus, the extract of Aronia melanocarpa increases the myocardial resistance to the injury effect of stress. KW - stress KW - myocardium KW - aging KW - Aronia melanocarpa extract KW - mitochondrial creatine kinase. N2 - The effects of the Aronia melanocarpa extract on mitochondrial creatine kinase isoenzyme of the old rats heart under stress were studied. The research was performed on 30 male rats of the Wistar line. For expiriment were used old (22–25 months) animals. It was established, that the injection of the extract (Aronia melanocarpa) at a dose of 0.2 g/kg 60 minutes before the immobilization has limited sensitivity of the heart muscle’s CPK-MT to damaging stress factors (reduced medium pH, increased medium tonicity, increased concentration of calcium, activated free radical processes), and helps the normalization of its kinetic properties, has an influence on the myocardium’s kinetic supply. Thus, the extract of Aronia melanocarpa increases the myocardial resistance to the injury effect of stress. CR - 1. Song H, Fang F, Arnberg FK, Mataix-Cols D, Fernández de la Cruz L, Almqvist C, et al. Stress related disorders and risk of cardiovascular disease: population based, sibling controlled cohort study. BMJ. 2019;365:l1255. https://doi.org/10.1136/ bmj.l1255 CR - 2. Steptoe A, Kivimäki M. Stress and cardiovascular disease. Nat Rev Cardiol. 2012;9(6):360-70. https://doi.org/10.1038/nrcardio. 2012.45 CR - 3. Fujino Y, Tanabe N, Honjo K, Suzuki S, Shirai K, Iso H, et al. A prospective cohort study of neighborhood stress and ischemic heart disease in Japan: a multilevel analysis using the JACC study data. BMC Public Health. 2011;11:398. https:// doi.org/10.1186/1471-2458-11-398 CR - 4. Davydov VV, Shvets VN. Adenine nucleotide and creatine phosphate pool in adult and old rat heart during immobilization stress. Gerontology. 2002;48(2):81-3. https://doi. org/10.1159/000048931 CR - 5. Fedosov SN, Belousova LV. Vliianie oligomerizatsii na svoĭstva sushchestvennykh dlia aktivnosti SH-grupp v mitokhondrial’noĭ kreatinkinaze [Effect of oligomerization on the properties of essential SH-groups of mitochondrial creatine kinase]. Biokhimiia. 1988;53(4):550-64 CR - 6. Nagornaya NV, Chetverik NA, Fedorova АА. Energetic exchange in cell in norm and patology. Possibility of it`s estimation. Clinical Herontology. 2008;6:58. CR - 7. Davydov VV, Shvets VN. Differential changes in the properties of mitochondrial isoenzyme creatine kinase from heart of adult and old rats during stress. Exp Gerontol. 1999;34(3):375- 8. https://doi.org/10.1016/s0531-5565(99)00020-0 CR - 8. Teneva D, Pencheva D, Petrova A, Ognyanov M, Georgiev Y, Denev P. Addition of medicinal plants increases antioxidant activity, color, and anthocyanin stability of black chokeberry (Aronia melanocarpa) functional beverages. Plants (Basel). 2022;11(3):243. https://doi.org/10.3390/plants11030243 CR - 9. Meng L, Xin G, Li B, Li D, Sun X, Yan T, et al. Anthocyanins extracted from Aronia melanocarpa protect SH-SY5Y cells against Amyloid-beta (1-42)-induced apoptosis by regulating Ca2+ homeostasis and inhibiting mitochondrial dysfunction. J Agric Food Chem. 2018;66(49):12967-77. https://doi. org/10.1021/acs.jafc.8b05404 CR - 10. Denev P, Číž M, Kratchanova M, Blazheva D. Black chokeberry (Aronia melanocarpa) polyphenols reveal different antioxidant, antimicrobial and neutrophil-modulating activities. Food Chem. 2019;284:108-17. https://doi.org/10.1016/j.foodchem. 2019.01.108 CR - 11. Sidor A, Gramza-Michałowska A. Black chokeberry Aronia melanocarpa L.-A qualitative composition, phenolic profile and antioxidant potential. Molecules. 2019;24(20):3710. https://doi.org/10.3390/molecules24203710 CR - 12. Jurikova T, Mlcek J, Skrovankova S, Sumczynski D, Sochor J, Hlavacova I, et al. Fruits of black chokeberry Aronia melanocarpa in the prevention of chronic diseases. Molecules. 2017;22(6):944. https://doi.org/10.3390/molecules22060944 CR - 13. Yang H, Kim YJ, Shin Y. Influence of ripening stage and cultivar on physicochemical properties and antioxidant compositions of Aronia grown in South Korea. Foods. 2019;8(12):598. https://doi.org/10.3390/foods8120598 CR - 14. Bushmeleva K, Vyshtakalyuk A, Terenzhev D, Belov T, Parfenov A, Sharonova N, et al. Radical scavenging actions and immunomodulatory activity of Aronia melanocarpa propylene glycol extracts. Plants (Basel). 2021 Nov 15;10(11):2458. https://doi.org/10.3390/plants10112458 CR - 15. Krga I, Milenkovic D. Anthocyanins: From Sources and Bioavailability to Cardiovascular-Health Benefits and Molecular Mechanisms of Action. J Agric Food Chem. 2019;67(7):1771- 83. https://doi.org/10.1021/acs.jafc.8b06737 CR - 16. Cvetanović A, Zengin G, Zeković Z, Švarc-Gajić J, Ražić S, Damjanović A, et al. Comparative in vitro studies of the biological potential and chemical composition of stems, leaves and berries Aronia melanocarpa’s extracts obtained by subcritical water extraction. Food Chem Toxicol. 2018;121:458-66. https://doi.org/10.1016/j.fct.2018.09.045 CR - 17. Staszowska-Karkut M, Materska M. Phenolic composition, mineral content, and beneficial bioactivities of leaf extracts from black currant (Ribes nigrum L.), raspberry (Rubus idaeus), and aronia (Aronia melanocarpa). Nutrients. 2020;12(2):463. https://doi.org/10.3390/nu12020463 CR - 18. Vendrame S, Klimis-Zacas D. Potential factors influencing the effects of anthocyanins on blood pressure regulation in humans: A Review. Nutrients. 2019;11(6):1431. https://doi. org/10.3390/nu11061431 CR - 19. Rudic J, Jakovljevic V, Jovic N, Nikolic M, Sretenovic J, Mitrovic S, et al. Antioxidative effects of standardized Aronia melanocarpa extract on reproductive and metabolic disturbances in a rat model of polycystic ovary syndrome. Antioxidants (Basel). 2022;11(6):1099. https://doi.org/10.3390/ antiox11061099 CR - 20. Cuvorova IN, Davydov VV, Prozorovskiĭ VN, Shvets VN. [Peculiarity of the antioxidant action of the extract from Aronia melanocarpa leaves antioxidant on the brain]. Biomed Khim. 2005;51(1):66-71. CR - 21. Kim SS, Shin Y. Antibacterial and in vitro antidementia effects of aronia (Aronia melanocarpa) leaf extracts. Food Sci Biotechnol. 2020;29(9):1295-1300. https://doi.org/10.1007/ s10068-020-00774-y CR - 22. Deng H, Xue B, Wang M, Tong Y, Tan C, Wan M, et al. TMT-based quantitative proteomics analyses reveal the antibacterial mechanisms of anthocyanins from Aronia melanocarpa against Escherichia coli O157:H7. J Agric Food Chem. 2022;70(26):8032-8042. https://doi.org/10.1021/acs. jafc.2c02742 CR - 23. Wei J, Yu W, Hao R, Fan J, Gao J. Anthocyanins from Aronia melanocarpa induce apoptosis in Caco-2 cells through Wnt/β-Catenin signaling pathway. Chem Biodivers. 2020;17(11):e2000654. https://doi.org/10.1002/ cbdv.202000654 CR - 24. Banach M, Wiloch M, Zawada K, Cyplik W, Kujawski W. Evaluation of antioxidant and anti-inflammatory activity of anthocyanin-rich water-soluble aronia dry extracts. Molecules. 2020;25(18):4055. https://doi.org/10.3390/molecules25184055 CR - 25. Ghosh M, Kim IS, Lee YM, Hong SM, Lee TH, Lim JH, Debnath T, Lim BO. The effects of Aronia melanocarpa ‘Viking’ extracts in attenuating RANKL-induced osteoclastic differentiation by inhibiting ROS generation and c-FOS/NFATc1 signaling. Molecules. 2018;23(3):615. https://doi.org/10.3390/ molecules23030615 CR - 26. Olechno E, Puścion-Jakubik A, Zujko ME. Chokeberry (A. melanocarpa (Michx.) Elliott)-A natural product for metabolic disorders? Nutrients. 2022;14(13):2688. https://doi. org/10.3390/nu14132688 CR - 27. Niesen S, Göttel C, Becker H, Bakuradze T, Winterhalter P, Richling E. Fractionation of extracts from black chokeberry, cranberry, and pomegranate to identify compounds that influence lipid metabolism. Foods. 2022;11(4):570. https://doi. org/10.3390/foods11040570 CR - 28. Middleton E Jr, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev. 2000;52(4):673-751. CR - 29. Shvets V, Maslak H, Davydov V, Berest H, Nosulenko I. The effect of Aronia melanocarpa extract on the phospholipid composition of the rat myocardium during stress. Ceska Slov Farm. 2022;71(3):98-102. CR - 30. Romano AD, Serviddio G, de Matthaeis A, Bellanti F, Vendemiale G. Oxidative stress and aging. J Nephrol. 2010;Suppl 15:S29-36. CR - 31. Saner H. Stress als kardiovaskulärer Risikofaktor [Stress as a cardiovascular risk factor]. Ther Umsch. 2005;62(9):597-602. German. https://doi.org/10.1024/0040-5930.62.9.597. CR - 32. Gavrysh OS, Shults NV, Kindzerska OL, Dorofeeva SI. Energetic supply of miocard at chronic heart failure of noncoronary genesis. Ukraine Cardiological Journal. 2011;3:44-9. CR - 33. Meerson FZ. Pathogenesis and prevention of stress and ischemic heart lesion. Medicine. 1984;270. CR - 34. Saks V, Dzeja P, Schlattner U. Cardiac system bioenergetics: metabolic basis of the Frank-Starling law. J Physiol. 2006;571(Pt 2):253-73. CR - 35. De Moor P, Steeno O, Raskin M, Hendrikx A. Fluorimetric determination of free plasma 11-hydroxycorticosteroids in man. Acta Endocrinol. 1960;33:297–307. CR - 36. European convention for the protection of vertebrate animals used for experimental and other scientific purposes. European Treaty Series 1986, No. 123. Strasbourg: Council of Europe. CR - 37. Lowry O, Rosebrough N, Randall R, Farr A. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193:265–75. CR - 38. Frolkis VV. The stress-age syndrome. Phisiologicheskii Juornal. 1991;37:3–11. CR - 39. Shvets VN. Age-specific peculiarities of the accumulation of carbonylated proteins in subcellular fraction of myocardium under immobilization stress influence, Uchenye zapiski Tavricheskogo Natsionalnogo Universiteta im. V.I. Vernadskogo. Series “Biology, chemistry”. 2008;21(1):169-73. CR - 40. Cadenas E. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol Med. 2000;29(3):222-30. CR - 41. Faff J, Frankiewicz-Jozko A. Effect of anthocyanin pigments from fruits of Aronia melanocarpa on the exercise-induced increase in lipid peroxidation marker in rat tissues. Biology of Sport. 2003;20:15-23. UR - https://doi.org/10.52794/hujpharm.1269999 L1 - https://dergipark.org.tr/en/download/article-file/3031460 ER -