TY - JOUR T1 - Majorization property for certain classes of analytic functions associated with general operator AU - Gour, Murli Manohar AU - Goswamı, Pranay AU - Goyal, Som Prakash AU - Yadav, Lokesh Kumar PY - 2024 DA - March Y2 - 2023 DO - 10.31801/cfsuasmas.1275521 JF - Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics JO - Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. PB - Ankara University WT - DergiPark SN - 1303-5991 SP - 122 EP - 130 VL - 73 IS - 1 LA - en AB - In this study, we introduce two new classes $S_{k}[E, F;\mu; \gamma]$ and $T_{k}(\theta,\,\mu,\,\gamma)$ of analytic functions using the general integral operator. For these two classes, we study the majorization properties. Some applications of the results are discussed in the form of corollaries. KW - Univalent functions KW - quasi-subordination KW - subordination KW - majorization property CR - Altintas, O., Özkan, Ö., Srivastava, H. M., Majorization by starlike functions of complex order, Complex Var. Elliptic Equ., (46)(3) (2001), 207–218. https://doi.org/10.1080/17476930108815409 CR - Attiya, A. A., Bulboaca, T., A general theorem associated with the Briot-Bouquet differential subordination, J. Comput. Anal. Appl., 16(4) (2014), 722–730. CR - Bulboaca, T., Classes of first-order differential subordinations, Demonstr. Math., 35 (2) (2002), 287–292. https://doi.org/10.4236/am.2011.27114 CR - Flett, T. M., The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl., 38(3) (1972), 746–765. https://doi.org/10.1016/0022-247X(72)90081-9 CR - Fournier, R., Ruscheweyh, S., On two extremal problems related to univalent functions, Rocky Mt. J. Math., 24 (1994), 529–538. https://doi.org/10.1216/rmjm/1181072416 CR - Goswami, P., Sharma B., Bulboac˘a, T., Majorization for certain classes of analytic functions using multiplier transformation, Appl. Math. Lett., 23(5) (2010), 633–637. https://doi.org/10.1016/j.aml.2010.01.029 CR - Goswami, P., Aouf, M. K., Majorization properties for certain classes of analytic functions using the Salagean operator, Appl. Math. Lett., 23(11) (2010), 1351–1354. https://doi.org/10.1016/j.aml.2010.06.030 CR - Gour, M. M., Goswami, P., Frasin B A., Althobaithi S., Majorization for certain classes of analytic functions defined by Fournier-Ruscheweyh integral operator, Journal of Mathematics, 2022 (2022), Article ID: 6580700. https://doi.org/10.1155/2022/6580700 CR - Goyal, S. P., Goswami, P., Majorization for certain classes of meromorphic functions defined by integral operator, Ann. Univ. Mariae Curie-Sk lodowska, Sect. A, 66(2) (2012), 57-62. https://doi.org/10.2478/v10062-012-0013-1 CR - Goyal, S. P., Goswami, P., Majorization for certain classes of analytic functions defined by fractional derivatives, Appl. Math. Lett., 22(12) (2009), 1855-1858. https://doi.org/10.1016/j.aml.2009.07.009 CR - Jung, I. B., Kim, Y. C., Srivastava, H. M., The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl., 176(1) (1993), 138-147. https://doi.org/10.1006/jmaa.1993.1204 CR - Kutbi, M. A., Attiya, A. A., Differential subordination result with the Srivastava-Attiya integral operator, J. Inequal. Appl., 2010 (2010), 1-10. https://doi.org/10.1155/2010/618523 CR - Li, J. L., Srivastava, H. M., Starlikeness of functions in the range of a class of integral operators, Integral Transforms Spec. Funct., 15(2) (2004), 129-136. https://doi.org/10.1080/10652460310001600708 CR - Li, J. L., Srivastava, H. M., Some questions and conjectures in the theory of univalent functions, Rocky Mt. J. Math., 28 (1998), 1035-1041. http://hdl.handle.net/1828/1649 CR - Li, J. L., Notes on Jung-Kim-Srivastava integral operator, J. Math. Anal. Appl., 294(1) (2004), 96-103. https://doi.org/10.1016/j.jmaa.2004.01.040 CR - Liu, J. L., Noor, K. I., Some properties of Noor integral operator, J. Nat. Geom., 21(1-2) (2002), 81–90. https://doi.org/10.1016/S0022-247X(03)00270-1 CR - MacGreogor, T. H., Majorization by univalent functions, Duke Math. J., 34 (1967), 95-102. https://doi.org/10.1215/S0012-7094-67-03411-4 CR - Nehari Z., Conformal Mapping, MacGraw-Hill Book Company, New York, Toronto, London, 1955. CR - Roberston M.S., Quasi-subordination and coefficient conjectures, Bull. Am. Math. Soc., 76 (1970), 1-9. CR - Srivastava, H. M., Attiya, A. A., An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integral Transforms Spec. Funct., 18(3) (2007), 207-216. https://doi.org/10.1080/10652460701208577 CR - Tang, H., Aouf, M. K., Deng, G. T., Majorization problems for certain subclasses of meromorphic multivalent functions associated with the Liu-Srivastava operator, Filomat, 29(4) (2015), 763-772. https://doi.org/10.2298/FIL1504763T CR - Tang, H., Deng, G., Majorization problems for two subclasses of analytic functions connected with the Liu-Owa integral operator and exponential function, J. Inequal. Appl., 277 (2018), 1-11. https://doi.org/10.1186/s13660-018-1865-x UR - https://doi.org/10.31801/cfsuasmas.1275521 L1 - https://dergipark.org.tr/en/download/article-file/3053523 ER -