TY - JOUR T1 - Green Synthesis and Characterization of Fe2O3 Nanoparticles TT - Fe2O3 Nanoparçacıkların Yeşil Sentezi ve Karakterizasyonu AU - Doğru Mert, Başak PY - 2023 DA - December DO - 10.53433/yyufbed.1276192 JF - Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi JO - YYU JINAS PB - Van Yuzuncu Yıl University WT - DergiPark SN - 1300-5413 SP - 1059 EP - 1067 VL - 28 IS - 3 LA - en AB - The aim of this study is to produce iron III oxide (Fe2O3) nanoparticles due to their wide application area. The ethanolic extract of curcuma was used in the synthesis method due to number of advantages. These benefits include being inexpensive, widely accessible, simple to extract, and less prone to contamination. The produced particles were analyzed via scanning electron microscope (SEM), energy dispersive analysis (EDX), and transmission electron microscope (TEM). Furthermore, the zeta potential of Fe2O3 particles was determined, ultraviolet–visible spectroscopy (UV) analysis and fourier transform infrared spectroscopy (FTIR) analysis were done. According to the results obtained, granular nanoparticles with particle sizes ranging from 30 to 80 nm were synthesized and it was determined that they were sufficiently stable. KW - Green synthesis KW - Iron (III) oxide KW - Nanoparticle N2 - Bu çalışmanın amacı geniş uygulama alanları nedeniyle demir III oksit (Fe2O3) nanoparçacıkları üretmektir. Birçok avantajı nedeniyle sentez yönteminde zerdeçalın etanolik ekstraktı kullanılmıştır. Bu avantajlar arasında ucuz olması, yaygın olarak erişilebilir olması, ekstaksiyonlarının basit olması ve kontaminasyona daha az eğilimli olması yer alır. Üretilen parçacıklar, taramalı elektron mikroskobu (SEM), enerji dağılımlı X-Ray analizi (EDX) ve geçirimli elektron mikroskobu (TEM) ile analiz edildi. Ayrıca Fe2O3 partiküllerinin zeta potansiyeli belirlendi, ultraviyole-görünür bölge spektroskopisi (UV) analizi ve fourier dönüşümlü kızılötesi spektroskopisi (FTIR) analizi yapıldı. Elde edilen sonuçlara göre tanecik boyutu 30 ile 80 nm arasında değişen granüler şekilli nanopartiküller sentezlendi ve yeterince kararlı oldukları tespit edildi. CR - Ali, H. R., Nassar H. N., & El-Gendy, N. S. (2017). Green synthesis of α-Fe2O3 using Citrus reticulum peels extract and water decontamination from different organic pollutants. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(13), 1425-1434. doi:10.1080/15567036.2017.1336818 CR - Alshamsi, H. A., Hussein, B. S. (2018). Synthesis, characterization and photocatalysis of g-Fe2O3 nanoparticles for degradation of cibacron brilliant yellow 3G-P. Asian Journal of Chemistry, 30(2), 273-279. doi:10.14233/ajchem.2018.20888 CR - Ateş, M. (2018). Nanoparçacıkların ölçme ve inceleme teknikleri. Turkish Journal of Scientific Reviews, 11(1), 63-69. CR - Bibi, I., Nazar, N., Ata, S., Sultan, M., Ali, A., Abbas, A., … & Iqbal, M. (2019). Green synthesis of iron oxide nanoparticles using pomegranate seeds extract and photocatalytic activity evaluation for the degradation of textile dye. Journal of Materials Research and Technology, 8(6), 6115-6124. doi:10.1016/j.jmrt.2019.10.006 CR - Chandransekar, N., Kumar, K. M. M., Balasubramnian, K. S., Karrunamurthy, K., & Varadharajan, R. (2013). Facile synthesis of iron oxide, iron-cobalt and zero valent iron nanoparticles and evaluation of their antimicrobial activity, free radicle scavenginging activity and antioxidant assay. Digest Journal of Nanomaterials and Biostructures, 8(2), 765-775. CR - Gomez-Zavaglia, A., Cassani, L., Hebert, E. M., & Gerbino, E. (2022). Green synthesis, characterization and applications of iron and zinc nanoparticles by probiotics. Food Research International, 155, 111097. doi:10.1016/j.foodres.2022.111097 CR - Huang, B. (2010). Super-resolution optical microscopy: multiple choices. Current Opinion in Chemical Biology, 14(1), 10-14. doi:10.1016/j.cbpa.2009.10.013 CR - Janusz, W., Sworska, A., & Szczypa, J. (1999). Electrical double layer at the a-Fe2O3–mixed electrolyte (ethanol–aqueous) interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 149(1-3), 421-426. doi:10.1016/S0927-7757(98)00561-5 CR - Lassoued, A., Dkhil, B., Gadri, A., & Ammar, S. (2017). Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method. Results in Physics, 7, 3007-3015. doi:10.1016/j.rinp.2017.07.066 CR - Luna, C., Cuan-Guerra, A. D., Barriga-Castro, E. D., Núñez, N. O., & Mendoza-Reséndez, R. (2016). Confinement and surface effects on the physical properties of rhombohedral-shape hematite (α-Fe2O3) nanocrystals. Materials Research Bulletin, 80, 44-52. doi:10.1016/j.materresbull.2016.03.029 CR - Meng, X., Ryu, J., Kim, B., & Ko, S. (2016). Application of iron oxide as a pH-dependent indicator for improving the nutritional quality. Clinical Nutrition Research, 5(3), 172-179. doi:10.7762/cnr.2016.5.3.172 CR - Mohammadi, S. Z., Khorasani-Motlagh, M., Jahani, S., & Yousefi, M. (2012). Synthesis and characterization of α-Fe2O3 nanoparticles by microwave method. International Journal of Nanoscience and Nanotechnology, 8(2), 87-92. CR - Parthasarathy, V., Selvi, J., Senthil Kumar, P., Anbarasan, R., & Mahalakshmi, S. (2020). Evaluation of mechanical, optical and thermal properties of PVA nanocomposites embedded with Fe2O3 nanofillers and the investigation of their thermal decomposition characteristics under non-isothermal heating condition. Polymer Bulletin, 78(4), 2191-2210. doi:10.1007/s00289-020-03206-3 CR - Patra, D., & El Kurdi, R. (2021). Curcumin as a novel reducing and stabilizing agent for the green synthesis of metallic nanoparticles. Green Chemistry Letters and Reviews, 14(3), 474-487. doi:10.1080/17518253.2021.1941306 CR - Qin, W., Yang, C., Yi, R., & Gao, G. (2011). Hydrothermal synthesis and characterization of single-crystalline -Fe2O3 nanocubes. Journal of Nanomaterials, 2011, 1-5. doi:10.1155/2011/159259 CR - Rizvi, M., Bhatia, T., & Gupta, R. (2022). Green & sustainable synthetic route of obtaining iron oxide nanoparticles using Hylocereus undantus (pitaya or dragon fruit). Materials Today: Proceedings, 50, 1100-1106. doi:10.1016/j.matpr.2021.07.469 CR - Rufus, A., N, S., & Philip, D. (2016). Synthesis of biogenic hematite (α-Fe2O3) nanoparticles for antibacterial and nanofluid applications. RSC Advances, 6(96), 94206-94217. doi:10.1039/C6RA20240C CR - Rydz, J., Šišková, A., & Andicsová Eckstein, A. (2019). Scanning electron microscopy and atomic force microscopy: Topographic and dynamical surface studies of blends, composites, and hybrid functional materials for sustainable future. Advances in Materials Science and Engineering, 2019, 1-16. doi:10.1155/2019/6871785 CR - Sarkar, J., Mollick, M. M., Chattopadhyay, D., & Acharya, K. (2017). An eco-friendly route of gamma-Fe2O3 nanoparticles formation and investigation of the mechanical properties of the HPMC-gamma-Fe2O3 nanocomposites. Bioprocess and Biosystems Engineering, 40(3), 351-359. doi:10.1007/s00449-016-1702-x CR - Selvaraj, R., Pai, S., Vinayagam, R., Varadavenkatesan, T., Kumar, P. S., Duc, P. A., & Rangasamy, G. (2022). A recent update on green synthesized iron and iron oxide nanoparticles for environmental applications. Chemosphere, 308(Pt2), 136331. doi:10.1016/j.chemosphere.2022.136331 CR - Tcnnesen, H. H., & Greenhill, J. V. (1992). Studies on curcumin and curcuminoids. XXII: Curcumin as a reducing agent and as a radical scavenger. International Journal of Pharmaceutics, 87, 79-87. CR - Vo, T. S., Vo, T. T. B. C., Vo, T. T. T. N., & Lai, T. N. H. (2021). Turmeric (Curcuma longa L.): chemical components and their effective clinical applications. Journal of the Turkish Chemical Society Section A: Chemistry, 8(3), 883-898. doi:10.18596/jotcsa.913136 CR - Wang, C., & Huang, Z. (2016). Controlled synthesis of α-Fe2O3 nanostructures for efficient photocatalysis. Materials Letters, 164, 194-197. doi:10.1016/j.matlet.2015.10.152 CR - Wei, S., Xing, P., Tang, Z., Wang, Y., & Dai, L. (2023). Spindle-shaped cobalt-doped iron phosphide anchored on three-dimensional graphene electrocatalysis for hydrogen evolution reactions in both acidic and alkaline media. Journal of Power Sources, 555, 232414. doi:10.1016/j.jpowsour.2022.232414 UR - https://doi.org/10.53433/yyufbed.1276192 L1 - https://dergipark.org.tr/en/download/article-file/3056194 ER -