TY - JOUR T1 - On Hermite-Hadamard type Inequalities for Proportional Caputo-Hybrid Operator AU - Sarıkaya, Mehmet Zeki PY - 2023 DA - April Y2 - 2023 JF - Konuralp Journal of Mathematics JO - Konuralp J. Math. PB - Mehmet Zeki SARIKAYA WT - DergiPark SN - 2147-625X SP - 31 EP - 39 VL - 11 IS - 1 LA - en AB - In this study, we present a new generalization of the Hermite-Hadamard type inequalities for convex functions via proportional Caputo-hybrid operator. Also, we give some new inequalities for proportional Caputo-hybrid operator using a newly developed generalized an identity, which is rigorously proven. KW - Convex function KW - Caputo fractional derivative KW - Riemann-Liouville integral and Hermite-Hadamard inequality CR - [1] H. Budak, E. Pehlivan and P. Kosem, On new extensions of Hermite-Hadamard inequalities for generalized fractional integrals, Sahand Communications in Mathematical Analysis, 18(1), 73-88, (2021). CR - [2] D. Baleanu, A. Fernandez and A. Akgul, On a fractional operator combining proportional and classical differintegrals, Mathematics, 2020, 8, 360. CR - [3] H. Budak, C. C. Bilis¸ik and M. Z. Sarikaya, On some new extensions of inequalities of Hermite-Hadamard type for generalized fractional integrals, Sahand Communications in Mathematical Analysis, 19(2), 65-79, (2022). CR - [4] S. S. Dragomir and R.P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezodial formula, Appl. Math. lett., 11(5) (1998), 91-95. CR - [5] S. S. Dragomir and C. E. M. Pearce, Selected topics on Hermite–Hadamard inequalities and applications, RGMIA Monographs, Victoria University, 2000. CR - [6] M. G¨urb¨uz, A. O. Akdemir and M. A. Dokuyucu, Novel approaches for differentiable convex functions via the proportional Caputo-hybrid operators, Fractal and Fractional, 6(5), 258, (2022). CR - [7] H. Kavurmaci, M. Avci and M.E. O¨ zdemir, New inequalities of Hermite-Hadamard type for convex functions with applications, J. Inequalities Appl. 2011, 2011, 86. CR - [8] U.S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput. 2004, 147, 137–146. CR - [9] U. S. Kirmaci, M. K. Bakula, M. E.O¨ zdemir and J. Pecˇaric´, Hadamard-type inequalities for s-convex functions, Applied Mathematics and Computation, 193(1), 26-35, (2007). CR - [10] D. S. Mitrinovic, J. E. Pecaric, and A. M. Fink, Inequalities involving functions and their integrals and derivatives, Kluwer Academic Publishers, Dordrecht, 1994. CR - [11] P. O. Mohammed and I. Brevik, A new version of the Hermite–Hadamard inequality for Riemann–Liouville fractional integrals,. Symmetry, 12(4), 610, (2020). CR - [12] S. G. Samko, A. A Kilbas, O. I. Marichev, Fractional Integrals and Derivatives Theory and Application, Gordan and Breach Science, New York, 1993. CR - [13] H. ¨O˘g¨ulm¨us¸ and M. Z. Sarikaya, Some Hermite–Hadamard type inequalities for h-convex functions and their applications, Iranian Journal of Science and Technology, Transactions A: Science, 44, 813-819, (2020). CR - [14] M.Z. Sarikaya and H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Mathematical Notes, 17(2), 1049-1059, (2016). CR - [15] M.Z. Sarikaya, E. Set, H. Yaldiz and N. Basak, Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model. 57, 2403–2407 (2013). CR - [16] M.Z. Sarikaya, F. Ertugral, On the generalized Hermite-Hadamard inequalities, Annals of the University of Craiova-Mathematics and Computer Science Series 47 (2020), no. 1, 193-213. CR - [17] M.Z. Sarikaya, H. Budak, Generalized Hermite-Hadamard type integral inequalities for fractional integrals, Filomat 30 (2016), no. 5, 1315–1326. CR - [18] M. Z. Sarikaya and N. Aktan, On the generalization of some integral inequalities and their applications, Mathematical and computer Modelling, 54(9-10), 2175-2182, (2011). CR - [19] Y. Zhang, J. Wang, On some new Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals, J. Inequal. Appl. 2013 (2013), Art. number 220. CR - [20] J. Wang, X. Li, M. Feckan, Y. Zhou, Hermite–Hadamard-type inequalities for Riemann–Liouville fractional integrals via two kinds of convexity, Appl. Anal. 92 (2012), no. 11, 2241–2253. CR - [21] J. Wang, X. Li, C. Zhu, Refinements of Hermite-Hadamard type inequalities involving fractional integrals, Bull. Belg. Math. Soc. Simon Stevin 20 (2013), 655–666. CR - [22] J. Wang, C. Zhu and Y. Zhou, New generalized Hermite-Hadamard type inequalities and applications to special means, Journal of Inequalities and Applications, 2013(1), 1-15, (2013). UR - https://dergipark.org.tr/en/pub/konuralpjournalmath/issue//1285660 L1 - https://dergipark.org.tr/en/download/article-file/3094350 ER -